Interconnected 3D Fe3O4/rGO as highly durable electrocatalyst for oxygen reduction reaction

IF 5.8 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Journal of Alloys and Compounds Pub Date : 2021-02-25 DOI:10.1016/j.jallcom.2020.157422
Xinfu He , Xueying Long , Peng Wang , Hongju Wu , Pengfei Han , Yong Tang , Keke Li , Xiaorui Ma , Yating Zhang
{"title":"Interconnected 3D Fe3O4/rGO as highly durable electrocatalyst for oxygen reduction reaction","authors":"Xinfu He ,&nbsp;Xueying Long ,&nbsp;Peng Wang ,&nbsp;Hongju Wu ,&nbsp;Pengfei Han ,&nbsp;Yong Tang ,&nbsp;Keke Li ,&nbsp;Xiaorui Ma ,&nbsp;Yating Zhang","doi":"10.1016/j.jallcom.2020.157422","DOIUrl":null,"url":null,"abstract":"<div><p>Development of low-cost and high-efficient oxygen reduction reaction (ORR) catalyst is a crucial challenge in fuel cell technology. Herein, we proposed a simple and scalable strategy to fabricate an interconnected 3D Fe<sub>3</sub>O<sub>4</sub>/rGO composite, in which Fe<sub>3</sub>O<sub>4</sub><span> nanoparticles mechanically anchor in reduced graphene oxide (rGO). Benefiting from its 3D layered structure with loose skeleton and rich porosity, and strong synergetic coupling between Fe</span><sub>3</sub>O<sub>4</sub> nanoparticles and rGO, the prepared composite, Fe<sub>3</sub>O<sub>4</sub>/rGO, provides better catalytic performance for ORR compared with commercial Pt/C catalyst, featuring high limiting current density (4.6 mA cm<sup>−2</sup>) close to that of Pt/C (4.7 mA cm<sup>−2</sup>), low H<sub>2</sub>O<sub>2</sub><span><span> yield (1%–6%), high electron transfer number (∼4), and outstanding long-term durability and methanol resistance in </span>alkaline electrolytes. These encouraging results manifest that the Fe</span><sub>3</sub>O<sub>4</sub>/rGO composite holds great promise as a low-cost and high-performance alternative catalyst for ORR.</p></div>","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"855 ","pages":"Article 157422"},"PeriodicalIF":5.8000,"publicationDate":"2021-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jallcom.2020.157422","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925838820337865","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 16

Abstract

Development of low-cost and high-efficient oxygen reduction reaction (ORR) catalyst is a crucial challenge in fuel cell technology. Herein, we proposed a simple and scalable strategy to fabricate an interconnected 3D Fe3O4/rGO composite, in which Fe3O4 nanoparticles mechanically anchor in reduced graphene oxide (rGO). Benefiting from its 3D layered structure with loose skeleton and rich porosity, and strong synergetic coupling between Fe3O4 nanoparticles and rGO, the prepared composite, Fe3O4/rGO, provides better catalytic performance for ORR compared with commercial Pt/C catalyst, featuring high limiting current density (4.6 mA cm−2) close to that of Pt/C (4.7 mA cm−2), low H2O2 yield (1%–6%), high electron transfer number (∼4), and outstanding long-term durability and methanol resistance in alkaline electrolytes. These encouraging results manifest that the Fe3O4/rGO composite holds great promise as a low-cost and high-performance alternative catalyst for ORR.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三维互联Fe3O4/rGO作为高耐用氧还原反应电催化剂
开发低成本、高效的氧还原反应催化剂是燃料电池技术面临的关键挑战。在此,我们提出了一种简单且可扩展的策略来制造互连的3D Fe3O4/rGO复合材料,其中Fe3O4纳米颗粒机械锚定在还原氧化石墨烯(rGO)中。制备的Fe3O4/rGO复合材料具有骨架疏松、孔隙度丰富的三维层状结构,且Fe3O4纳米颗粒与rGO之间具有较强的协同耦合作用,与商业Pt/C催化剂相比,具有较高的极限电流密度(4.6 mA cm−2),接近Pt/C催化剂(4.7 mA cm−2),较低的H2O2产率(1% ~ 6%),较高的电子转移数(~ 4),具有更好的ORR催化性能。在碱性电解质中具有优异的长期耐用性和耐甲醇性。这些令人鼓舞的结果表明,Fe3O4/rGO复合材料作为一种低成本、高性能的ORR替代催化剂具有很大的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Alloys and Compounds
Journal of Alloys and Compounds 工程技术-材料科学:综合
CiteScore
11.10
自引率
14.50%
发文量
5146
审稿时长
67 days
期刊介绍: The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.
期刊最新文献
Continuously Visualizing Temperature Inhomogeneity by Thermal Memory Pigments with Chromaticity-Dependent Non-Stoichiometric Magnéli Phase High-throughput exploration of composition-dependent mechanical and diffusion properties of Ti-Al-V-Cr alloys Preparation of Z-scheme Heterostructure Ti-doped ZnFe2O4/Bi2WO6 Film Photoanode for Photoelectrochemical Water Splitting New insight into the structural, hydrogen storage capacity, dehydrogenated mechanism and physical properties of Alkali metal AMAlH4 hydrides Efficient and Stable Cs5Cu3Cl8-xIx (x=1,2) Single Crystalline Scintillators for X-ray Imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1