Xinfu He , Xueying Long , Peng Wang , Hongju Wu , Pengfei Han , Yong Tang , Keke Li , Xiaorui Ma , Yating Zhang
{"title":"Interconnected 3D Fe3O4/rGO as highly durable electrocatalyst for oxygen reduction reaction","authors":"Xinfu He , Xueying Long , Peng Wang , Hongju Wu , Pengfei Han , Yong Tang , Keke Li , Xiaorui Ma , Yating Zhang","doi":"10.1016/j.jallcom.2020.157422","DOIUrl":null,"url":null,"abstract":"<div><p>Development of low-cost and high-efficient oxygen reduction reaction (ORR) catalyst is a crucial challenge in fuel cell technology. Herein, we proposed a simple and scalable strategy to fabricate an interconnected 3D Fe<sub>3</sub>O<sub>4</sub>/rGO composite, in which Fe<sub>3</sub>O<sub>4</sub><span> nanoparticles mechanically anchor in reduced graphene oxide (rGO). Benefiting from its 3D layered structure with loose skeleton and rich porosity, and strong synergetic coupling between Fe</span><sub>3</sub>O<sub>4</sub> nanoparticles and rGO, the prepared composite, Fe<sub>3</sub>O<sub>4</sub>/rGO, provides better catalytic performance for ORR compared with commercial Pt/C catalyst, featuring high limiting current density (4.6 mA cm<sup>−2</sup>) close to that of Pt/C (4.7 mA cm<sup>−2</sup>), low H<sub>2</sub>O<sub>2</sub><span><span> yield (1%–6%), high electron transfer number (∼4), and outstanding long-term durability and methanol resistance in </span>alkaline electrolytes. These encouraging results manifest that the Fe</span><sub>3</sub>O<sub>4</sub>/rGO composite holds great promise as a low-cost and high-performance alternative catalyst for ORR.</p></div>","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"855 ","pages":"Article 157422"},"PeriodicalIF":5.8000,"publicationDate":"2021-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jallcom.2020.157422","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925838820337865","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 16
Abstract
Development of low-cost and high-efficient oxygen reduction reaction (ORR) catalyst is a crucial challenge in fuel cell technology. Herein, we proposed a simple and scalable strategy to fabricate an interconnected 3D Fe3O4/rGO composite, in which Fe3O4 nanoparticles mechanically anchor in reduced graphene oxide (rGO). Benefiting from its 3D layered structure with loose skeleton and rich porosity, and strong synergetic coupling between Fe3O4 nanoparticles and rGO, the prepared composite, Fe3O4/rGO, provides better catalytic performance for ORR compared with commercial Pt/C catalyst, featuring high limiting current density (4.6 mA cm−2) close to that of Pt/C (4.7 mA cm−2), low H2O2 yield (1%–6%), high electron transfer number (∼4), and outstanding long-term durability and methanol resistance in alkaline electrolytes. These encouraging results manifest that the Fe3O4/rGO composite holds great promise as a low-cost and high-performance alternative catalyst for ORR.
开发低成本、高效的氧还原反应催化剂是燃料电池技术面临的关键挑战。在此,我们提出了一种简单且可扩展的策略来制造互连的3D Fe3O4/rGO复合材料,其中Fe3O4纳米颗粒机械锚定在还原氧化石墨烯(rGO)中。制备的Fe3O4/rGO复合材料具有骨架疏松、孔隙度丰富的三维层状结构,且Fe3O4纳米颗粒与rGO之间具有较强的协同耦合作用,与商业Pt/C催化剂相比,具有较高的极限电流密度(4.6 mA cm−2),接近Pt/C催化剂(4.7 mA cm−2),较低的H2O2产率(1% ~ 6%),较高的电子转移数(~ 4),具有更好的ORR催化性能。在碱性电解质中具有优异的长期耐用性和耐甲醇性。这些令人鼓舞的结果表明,Fe3O4/rGO复合材料作为一种低成本、高性能的ORR替代催化剂具有很大的前景。
期刊介绍:
The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.