{"title":"Protein families: implications for allergen nomenclature, standardisation and specific immunotherapy.","authors":"Heimo Breiteneder","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Allergens are embedded into the protein universe as members of large families and superfamilies of related proteins which is a direct consequence of their shared evolution. The classification of allergens by protein families offers a valuable frame of reference that allows the design of experiments to study cross-reactivity and allergenic potency of proteins. Information on protein family membership also complements the current official IUIS allergen nomenclature. All presently known allergens belong to one of 140 (1.4%) of the 10,340 protein families currently described by version 23.0 of the Pfam database. This is indicative of a strong bias among allergens towards certain protein architectures that are able to induce an IgE response in an atopic immune system. However, even small variations in the structure of a protein alter its immunological characteristics. Various isoforms of the major birch pollen allergen Bet v 1 were shown to possess highly variant immunogenic and allergenic properties. Ber e 1 and SFA8, two 2S albumins, were revealed to display differential capacities to polarise an immune response. Such data will be exploited in the future for the design of allergy vaccines.</p>","PeriodicalId":88824,"journal":{"name":"Arbeiten aus dem Paul-Ehrlich-Institut (Bundesinstitut fur Impfstoffe und biomedizinische Arzneimittel) Langen/Hessen","volume":"96 ","pages":"249-54; discussion 254-6"},"PeriodicalIF":0.0000,"publicationDate":"2009-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arbeiten aus dem Paul-Ehrlich-Institut (Bundesinstitut fur Impfstoffe und biomedizinische Arzneimittel) Langen/Hessen","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Allergens are embedded into the protein universe as members of large families and superfamilies of related proteins which is a direct consequence of their shared evolution. The classification of allergens by protein families offers a valuable frame of reference that allows the design of experiments to study cross-reactivity and allergenic potency of proteins. Information on protein family membership also complements the current official IUIS allergen nomenclature. All presently known allergens belong to one of 140 (1.4%) of the 10,340 protein families currently described by version 23.0 of the Pfam database. This is indicative of a strong bias among allergens towards certain protein architectures that are able to induce an IgE response in an atopic immune system. However, even small variations in the structure of a protein alter its immunological characteristics. Various isoforms of the major birch pollen allergen Bet v 1 were shown to possess highly variant immunogenic and allergenic properties. Ber e 1 and SFA8, two 2S albumins, were revealed to display differential capacities to polarise an immune response. Such data will be exploited in the future for the design of allergy vaccines.