{"title":"Rating Movies and Rating the Raters Who Rate Them.","authors":"Hua Zhou, Kenneth Lange","doi":"10.1198/tast.2009.08278","DOIUrl":null,"url":null,"abstract":"<p><p>The movie distribution company Netflix has generated considerable buzz in the statistics community by offering a million dollar prize for improvements to its movie rating system. Among the statisticians and computer scientists who have disclosed their techniques, the emphasis has been on machine learning approaches. This article has the modest goal of discussing a simple model for movie rating and other forms of democratic rating. Because the model involves a large number of parameters, it is nontrivial to carry out maximum likelihood estimation. Here we derive a straightforward EM algorithm from the perspective of the more general MM algorithm. The algorithm is capable of finding the global maximum on a likelihood landscape littered with inferior modes. We apply two variants of the model to a dataset from the MovieLens archive and compare their results. Our model identifies quirky raters, redefines the raw rankings, and permits imputation of missing ratings. The model is intended to stimulate discussion and development of better theory rather than to win the prize. It has the added benefit of introducing readers to some of the issues connected with analyzing high-dimensional data.</p>","PeriodicalId":50801,"journal":{"name":"American Statistician","volume":"63 4","pages":"297-307"},"PeriodicalIF":1.8000,"publicationDate":"2009-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1198/tast.2009.08278","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Statistician","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1198/tast.2009.08278","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 20
Abstract
The movie distribution company Netflix has generated considerable buzz in the statistics community by offering a million dollar prize for improvements to its movie rating system. Among the statisticians and computer scientists who have disclosed their techniques, the emphasis has been on machine learning approaches. This article has the modest goal of discussing a simple model for movie rating and other forms of democratic rating. Because the model involves a large number of parameters, it is nontrivial to carry out maximum likelihood estimation. Here we derive a straightforward EM algorithm from the perspective of the more general MM algorithm. The algorithm is capable of finding the global maximum on a likelihood landscape littered with inferior modes. We apply two variants of the model to a dataset from the MovieLens archive and compare their results. Our model identifies quirky raters, redefines the raw rankings, and permits imputation of missing ratings. The model is intended to stimulate discussion and development of better theory rather than to win the prize. It has the added benefit of introducing readers to some of the issues connected with analyzing high-dimensional data.
期刊介绍:
Are you looking for general-interest articles about current national and international statistical problems and programs; interesting and fun articles of a general nature about statistics and its applications; or the teaching of statistics? Then you are looking for The American Statistician (TAS), published quarterly by the American Statistical Association. TAS contains timely articles organized into the following sections: Statistical Practice, General, Teacher''s Corner, History Corner, Interdisciplinary, Statistical Computing and Graphics, Reviews of Books and Teaching Materials, and Letters to the Editor.