Edward H. Hu, Feng Pan, Béla Völgyi, Stewart A. Bloomfield
{"title":"Light increases the gap junctional coupling of retinal ganglion cells","authors":"Edward H. Hu, Feng Pan, Béla Völgyi, Stewart A. Bloomfield","doi":"10.1113/jphysiol.2010.193268","DOIUrl":null,"url":null,"abstract":"<p>We examined the effect of light adaptation on the gap junctional coupling of α-ganglion cells (α-GCs) in rabbit and mouse retinas. We assayed changes in coupling by measuring parameters of tracer coupling following injection of α-GCs with Neurobiotin and the concerted spike activity of α-GC neighbours under dark- and light-adapted conditions. We found that light adaptation using mesopic or photopic background lights resulted in a dramatic increase in the labelling intensity, number, and spatial extent of ganglion and amacrine cells coupled to OFF α-GCs when compared to levels seen under dark adaptation. While this augmentation of coupling by light did not produce an increase in the concerted spontaneous activity of OFF α-GC neighbours, it did significantly increase correlated light-evoked spiking. This was seen as an increase in the number of correlated spikes for α-GC neighbours and an extension of correlations to second-tier neighbours that was not seen under dark-adapted conditions. Pharmacological studies in the rabbit retina indicated that dopamine mediates the observed changes in coupling by differentially activating D1 and D2 receptors under different adaptation states. In this scheme, activation of dopamine D1 receptors following light exposure triggers cAMP-mediated intracellular pathways resulting in an increase in gap junctional conductance. Overall, our results indicate that as we move from night to day there is an enhanced electrical coupling between α-GCs, thereby increasing the concerted activity believed to strengthen the capacity and efficiency of information flow across the optic nerve.</p>","PeriodicalId":50088,"journal":{"name":"Journal of Physiology-London","volume":"588 21","pages":"4145-4163"},"PeriodicalIF":4.4000,"publicationDate":"2010-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1113/jphysiol.2010.193268","citationCount":"68","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physiology-London","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1113/jphysiol.2010.193268","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 68
Abstract
We examined the effect of light adaptation on the gap junctional coupling of α-ganglion cells (α-GCs) in rabbit and mouse retinas. We assayed changes in coupling by measuring parameters of tracer coupling following injection of α-GCs with Neurobiotin and the concerted spike activity of α-GC neighbours under dark- and light-adapted conditions. We found that light adaptation using mesopic or photopic background lights resulted in a dramatic increase in the labelling intensity, number, and spatial extent of ganglion and amacrine cells coupled to OFF α-GCs when compared to levels seen under dark adaptation. While this augmentation of coupling by light did not produce an increase in the concerted spontaneous activity of OFF α-GC neighbours, it did significantly increase correlated light-evoked spiking. This was seen as an increase in the number of correlated spikes for α-GC neighbours and an extension of correlations to second-tier neighbours that was not seen under dark-adapted conditions. Pharmacological studies in the rabbit retina indicated that dopamine mediates the observed changes in coupling by differentially activating D1 and D2 receptors under different adaptation states. In this scheme, activation of dopamine D1 receptors following light exposure triggers cAMP-mediated intracellular pathways resulting in an increase in gap junctional conductance. Overall, our results indicate that as we move from night to day there is an enhanced electrical coupling between α-GCs, thereby increasing the concerted activity believed to strengthen the capacity and efficiency of information flow across the optic nerve.
期刊介绍:
The Journal of Physiology publishes full-length original Research Papers and Techniques for Physiology, which are short papers aimed at disseminating new techniques for physiological research. Articles solicited by the Editorial Board include Perspectives, Symposium Reports and Topical Reviews, which highlight areas of special physiological interest. CrossTalk articles are short editorial-style invited articles framing a debate between experts in the field on controversial topics. Letters to the Editor and Journal Club articles are also published. All categories of papers are subjected to peer reivew.
The Journal of Physiology welcomes submitted research papers in all areas of physiology. Authors should present original work that illustrates new physiological principles or mechanisms. Papers on work at the molecular level, at the level of the cell membrane, single cells, tissues or organs and on systems physiology are all acceptable. Theoretical papers and papers that use computational models to further our understanding of physiological processes will be considered if based on experimentally derived data and if the hypothesis advanced is directly amenable to experimental testing. While emphasis is on human and mammalian physiology, work on lower vertebrate or invertebrate preparations may be suitable if it furthers the understanding of the functioning of other organisms including mammals.