Function of NOD-like receptors in immunity and disease.

Maryse Dagenais, Jeremy Dupaul-Chicoine, Maya Saleh
{"title":"Function of NOD-like receptors in immunity and disease.","authors":"Maryse Dagenais,&nbsp;Jeremy Dupaul-Chicoine,&nbsp;Maya Saleh","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Nucleotide-binding and oligomerization domain (NOD)-like receptors (NLRs) are cytosolic pattern-recognition receptors that sense microbial invasion, cell stress and physiological perturbations, and elicit an inflammatory response to alert the system to the presence of danger. Most NLRs exert their functions by assembling inflammasomes that recruit and activate caspase-1, whereas a few engage the NFκB and MAPK pathways. In the past few years, significant insights have been gained into the regulatory mechanisms of these innate immunity effectors and their role in health and disease that, notably, have led to direct therapeutic applications in the clinic. This review discusses the biology of NLRs, focusing on recent advances in the field that indicate a broader role for these proteins than had been previously anticipated, such as in priming systemic innate immunity, driving adaptive immunity, maintaining tissue homeostasis and inducing tissue repair following injury.</p>","PeriodicalId":10978,"journal":{"name":"Current opinion in investigational drugs","volume":"11 11","pages":"1246-55"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in investigational drugs","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nucleotide-binding and oligomerization domain (NOD)-like receptors (NLRs) are cytosolic pattern-recognition receptors that sense microbial invasion, cell stress and physiological perturbations, and elicit an inflammatory response to alert the system to the presence of danger. Most NLRs exert their functions by assembling inflammasomes that recruit and activate caspase-1, whereas a few engage the NFκB and MAPK pathways. In the past few years, significant insights have been gained into the regulatory mechanisms of these innate immunity effectors and their role in health and disease that, notably, have led to direct therapeutic applications in the clinic. This review discusses the biology of NLRs, focusing on recent advances in the field that indicate a broader role for these proteins than had been previously anticipated, such as in priming systemic innate immunity, driving adaptive immunity, maintaining tissue homeostasis and inducing tissue repair following injury.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
nod样受体在免疫和疾病中的作用。
核苷酸结合和寡聚化结构域(NOD)样受体(NLRs)是细胞质模式识别受体,可感知微生物入侵、细胞应激和生理扰动,并引发炎症反应,提醒系统注意危险的存在。大多数nlr通过聚集募集和激活caspase-1的炎性小体发挥其功能,而少数nlr参与NFκB和MAPK途径。在过去的几年中,人们对这些先天免疫效应物的调控机制及其在健康和疾病中的作用有了重要的了解,特别是在临床中直接应用于治疗。这篇综述讨论了nlr的生物学,重点介绍了该领域的最新进展,这些进展表明这些蛋白质的作用比以前预期的更广泛,例如启动系统性先天免疫,驱动适应性免疫,维持组织稳态和诱导损伤后的组织修复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊最新文献
Bafetinib, a dual Bcr-Abl/Lyn tyrosine kinase inhibitor for the potential treatment of leukemia. Gene therapy for HCV/HBV-induced hepatocellular carcinoma. Anti-GITR antibodies--potential clinical applications for tumor immunotherapy. Intracellular amino acid sensing and mTORC1-regulated growth: new ways to block an old target? Agents targeting the Hedgehog pathway for pancreatic cancer treatment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1