{"title":"Pyrolysis of sewage sludge under conditions relevant to applied smouldering combustion","authors":"Chao Feng , Wanrong Xie , Dongyan Zhang , Xiangpeng Gao , Yu Qiao , Minghou Xu","doi":"10.1016/j.proci.2022.07.202","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Pyrolysis of sewage sludge under conditions relevant to applied smouldering combustion was carried out in this study to investigate the influences of </span>gas flow rate<span>, oxidative atmosphere, and inert porous medium involvement on the properties of products. The experiments were carried out at 300–600 °C under atmospheres of N</span></span><sub>2</sub>, 5% O<sub>2</sub>/95% N<sub>2</sub>, 10% O<sub>2</sub>/90% N<sub>2</sub>, and 15% O<sub>2</sub>/85% N<sub>2</sub><span>, with Darcy flow rates of 1.0 and 3.5 cm/s, respectively, with dried sewage sludge loaded individually or as a mixture with sand. As a result, both the increment of gas flow rate and involvement of sand leaded to lower yields of char and higher yields of bio-oil and gas under N</span><sub>2</sub> at temperature of ≤500 °C, due to the enhanced efficiency of pyrolysis reaction and gas transportation. However, when temperature increased to 600 °C, the influencing trends on product distributions changed due to the mechanisms of secondary cracking reaction and volatile-char interaction. The involvement of oxygen in fraction of ≤15 vol% at temperatures of 400–500 °C would lead to the intense decreasing yields of char and bio-oil, and increasing yield of the gaseous (dominated by CO<sub>2</sub><span> and CO), due to the involved oxidation reaction during pyrolysis. Both increment of temperature and oxygen fraction would lead to the delay of ignition and the increase of activation energy of the produced char, except for that of char produced at 400 °C under 5% O</span><sub>2</sub>/95% N<sub>2</sub>, whose calculated activation energy was lower and volatile content was higher compared to that of char produced from pyrolysis at 400 °C under N<sub>2</sub>. The bio-oil from pyrolysis under N<sub>2</sub><span> was dominated by aliphatic acids, phenols<span>, steroids, amides, and indoles<span>, etc., and the involvement of partial oxidation would lead to the weakened formation of aromatics, phenols, and S/Cl/F-containing compounds in bio-oil.</span></span></span></p></div>","PeriodicalId":408,"journal":{"name":"Proceedings of the Combustion Institute","volume":"39 3","pages":"Pages 3447-3456"},"PeriodicalIF":5.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Combustion Institute","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1540748922002206","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 1
Abstract
Pyrolysis of sewage sludge under conditions relevant to applied smouldering combustion was carried out in this study to investigate the influences of gas flow rate, oxidative atmosphere, and inert porous medium involvement on the properties of products. The experiments were carried out at 300–600 °C under atmospheres of N2, 5% O2/95% N2, 10% O2/90% N2, and 15% O2/85% N2, with Darcy flow rates of 1.0 and 3.5 cm/s, respectively, with dried sewage sludge loaded individually or as a mixture with sand. As a result, both the increment of gas flow rate and involvement of sand leaded to lower yields of char and higher yields of bio-oil and gas under N2 at temperature of ≤500 °C, due to the enhanced efficiency of pyrolysis reaction and gas transportation. However, when temperature increased to 600 °C, the influencing trends on product distributions changed due to the mechanisms of secondary cracking reaction and volatile-char interaction. The involvement of oxygen in fraction of ≤15 vol% at temperatures of 400–500 °C would lead to the intense decreasing yields of char and bio-oil, and increasing yield of the gaseous (dominated by CO2 and CO), due to the involved oxidation reaction during pyrolysis. Both increment of temperature and oxygen fraction would lead to the delay of ignition and the increase of activation energy of the produced char, except for that of char produced at 400 °C under 5% O2/95% N2, whose calculated activation energy was lower and volatile content was higher compared to that of char produced from pyrolysis at 400 °C under N2. The bio-oil from pyrolysis under N2 was dominated by aliphatic acids, phenols, steroids, amides, and indoles, etc., and the involvement of partial oxidation would lead to the weakened formation of aromatics, phenols, and S/Cl/F-containing compounds in bio-oil.
期刊介绍:
The Proceedings of the Combustion Institute contains forefront contributions in fundamentals and applications of combustion science. For more than 50 years, the Combustion Institute has served as the peak international society for dissemination of scientific and technical research in the combustion field. In addition to author submissions, the Proceedings of the Combustion Institute includes the Institute''s prestigious invited strategic and topical reviews that represent indispensable resources for emergent research in the field. All papers are subjected to rigorous peer review.
Research papers and invited topical reviews; Reaction Kinetics; Soot, PAH, and other large molecules; Diagnostics; Laminar Flames; Turbulent Flames; Heterogeneous Combustion; Spray and Droplet Combustion; Detonations, Explosions & Supersonic Combustion; Fire Research; Stationary Combustion Systems; IC Engine and Gas Turbine Combustion; New Technology Concepts
The electronic version of Proceedings of the Combustion Institute contains supplemental material such as reaction mechanisms, illustrating movies, and other data.