{"title":"Similarity-Based Searching in Multi-Parameter Time Series Databases.","authors":"Lh Lehman, M Saeed, Gb Moody, Rg Mark","doi":"10.1109/CIC.2008.4749126","DOIUrl":null,"url":null,"abstract":"<p><p>We present a similarity-based searching and pattern matching algorithm that identifies time series data with similar temporal dynamics in large-scale, multi-parameter databases. We represent time series segments by feature vectors that reflect the dynamical patterns of single and multi-dimensional physiological time series. Features include regression slopes at varying time scales, maximum transient changes, auto-correlation coefficients of individual signals, and cross correlations among multiple signals. We model the dynamical patterns with a Gaussian mixture model (GMM) learned with the Expectation Maximization algorithm, and compute similarity between segments as Mahalanobis distances. We evaluate the use of our algorithm in three applications: search-by-example based data retrieval, event classification, and forecasting, using synthetic and real physiologic time series from a variety of sources.</p>","PeriodicalId":80984,"journal":{"name":"Computers in cardiology","volume":"35 4749126","pages":"653-656"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/CIC.2008.4749126","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in cardiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIC.2008.4749126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26
Abstract
We present a similarity-based searching and pattern matching algorithm that identifies time series data with similar temporal dynamics in large-scale, multi-parameter databases. We represent time series segments by feature vectors that reflect the dynamical patterns of single and multi-dimensional physiological time series. Features include regression slopes at varying time scales, maximum transient changes, auto-correlation coefficients of individual signals, and cross correlations among multiple signals. We model the dynamical patterns with a Gaussian mixture model (GMM) learned with the Expectation Maximization algorithm, and compute similarity between segments as Mahalanobis distances. We evaluate the use of our algorithm in three applications: search-by-example based data retrieval, event classification, and forecasting, using synthetic and real physiologic time series from a variety of sources.