A Balanced Accuracy Fitness Function Leads to Robust Analysis using Grammatical Evolution Neural Networks in the Case of Class Imbalance.

Nicholas E Hardison, Theresa J Fanelli, Scott M Dudek, David M Reif, Marylyn D Ritchie, Alison A Motsinger-Reif
{"title":"A Balanced Accuracy Fitness Function Leads to Robust Analysis using Grammatical Evolution Neural Networks in the Case of Class Imbalance.","authors":"Nicholas E Hardison,&nbsp;Theresa J Fanelli,&nbsp;Scott M Dudek,&nbsp;David M Reif,&nbsp;Marylyn D Ritchie,&nbsp;Alison A Motsinger-Reif","doi":"10.1145/1389095.1389159","DOIUrl":null,"url":null,"abstract":"<p><p>Grammatical Evolution Neural Networks (GENN) is a computational method designed to detect gene-gene interactions in genetic epidemiology, but has so far only been evaluated in situations with balanced numbers of cases and controls. Real data, however, rarely has such perfectly balanced classes. In the current study, we test the power of GENN to detect interactions in data with a range of class imbalance using two fitness functions (classification error and balanced error), as well as data re-sampling. We show that when using classification error, class imbalance greatly decreases the power of GENN. Re-sampling methods demonstrated improved power, but using balanced accuracy resulted in the highest power. Based on the results of this study, balanced error has replaced classification error in the GENN algorithm.</p>","PeriodicalId":88876,"journal":{"name":"Genetic and Evolutionary Computation Conference : [proceedings]. Genetic and Evolutionary Computation Conference","volume":"2008 ","pages":"353-354"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/1389095.1389159","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetic and Evolutionary Computation Conference : [proceedings]. Genetic and Evolutionary Computation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1389095.1389159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Grammatical Evolution Neural Networks (GENN) is a computational method designed to detect gene-gene interactions in genetic epidemiology, but has so far only been evaluated in situations with balanced numbers of cases and controls. Real data, however, rarely has such perfectly balanced classes. In the current study, we test the power of GENN to detect interactions in data with a range of class imbalance using two fitness functions (classification error and balanced error), as well as data re-sampling. We show that when using classification error, class imbalance greatly decreases the power of GENN. Re-sampling methods demonstrated improved power, but using balanced accuracy resulted in the highest power. Based on the results of this study, balanced error has replaced classification error in the GENN algorithm.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在类不平衡的情况下,平衡的准确度适应度函数使语法进化神经网络具有鲁棒性分析。
语法进化神经网络(GENN)是一种用于检测遗传流行病学中基因-基因相互作用的计算方法,但迄今为止仅在病例和对照数量平衡的情况下进行了评估。然而,真实的数据很少有如此完美平衡的类。在当前的研究中,我们使用两个适应度函数(分类误差和平衡误差)以及数据重采样来测试GENN在具有一定类别不平衡范围的数据中检测相互作用的能力。我们发现,当使用分类误差时,类不平衡大大降低了GENN的功率。重新采样方法证明了改进的功率,但使用平衡精度导致最高功率。根据本研究的结果,平衡误差已经取代了GENN算法中的分类误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Grammar-Based Vectorial Genetic Programming for Symbolic Regression Designing Multiple ANNs with Evolutionary Development: Activity Dependence Evolution of the Semiconductor Industry, and the Start of X Law Back to the Future—Revisiting OrdinalGP and Trustable Models After a Decade Finding Simple Solutions to Multi-Task Visual Reinforcement Learning Problems with Tangled Program Graphs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1