Maximum Likelihood Event Estimation and List-mode Image Reconstruction on GPU Hardware.

Luca Caucci, Lars R Furenlid, Harrison H Barrett
{"title":"Maximum Likelihood Event Estimation and List-mode Image Reconstruction on GPU Hardware.","authors":"Luca Caucci, Lars R Furenlid, Harrison H Barrett","doi":"10.1109/NSSMIC.2009.5402392","DOIUrl":null,"url":null,"abstract":"The scintillation detectors commonly used in SPECT and PET imaging and in Compton cameras require estimation of the position and energy of each gamma ray interaction. Ideally, this process would yield images with no spatial distortion and the best possible spatial resolution. In addition, especially for Compton cameras, the computation must yield the best possible estimate of the energy of each interacting gamma ray. These goals can be achieved by use of maximum-likelihood (ML) estimation of the event parameters, but in the past the search for an ML estimate has not been computationally feasible. Now, however, graphics processing units (GPUs) make it possible to produce optimal, real-time estimates of position and energy, even from scintillation cameras with a large number of photodetectors. In addition, the mathematical properties of ML estimates make them very attractive for use as list entries in list-mode ML image reconstruction. This two-step ML process — using ML estimation once to get the list data and again to reconstruct the object — allows accurate modeling of the detector blur and, potentially, considerable improvement in reconstructed spatial resolution.","PeriodicalId":73298,"journal":{"name":"IEEE Nuclear Science Symposium conference record. Nuclear Science Symposium","volume":"2009 ","pages":"4072"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/NSSMIC.2009.5402392","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Nuclear Science Symposium conference record. Nuclear Science Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSSMIC.2009.5402392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

The scintillation detectors commonly used in SPECT and PET imaging and in Compton cameras require estimation of the position and energy of each gamma ray interaction. Ideally, this process would yield images with no spatial distortion and the best possible spatial resolution. In addition, especially for Compton cameras, the computation must yield the best possible estimate of the energy of each interacting gamma ray. These goals can be achieved by use of maximum-likelihood (ML) estimation of the event parameters, but in the past the search for an ML estimate has not been computationally feasible. Now, however, graphics processing units (GPUs) make it possible to produce optimal, real-time estimates of position and energy, even from scintillation cameras with a large number of photodetectors. In addition, the mathematical properties of ML estimates make them very attractive for use as list entries in list-mode ML image reconstruction. This two-step ML process — using ML estimation once to get the list data and again to reconstruct the object — allows accurate modeling of the detector blur and, potentially, considerable improvement in reconstructed spatial resolution.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GPU硬件上的最大似然事件估计和列表模式图像重建。
通常用于SPECT和PET成像和康普顿相机的闪烁探测器需要估计每个伽马射线相互作用的位置和能量。理想情况下,这个过程将产生没有空间失真和最佳空间分辨率的图像。此外,特别是对于康普顿照相机,计算必须产生每一个相互作用的伽马射线的能量的最佳估计。这些目标可以通过使用事件参数的最大似然(ML)估计来实现,但在过去,搜索ML估计在计算上是不可行的。然而,现在,图形处理单元(gpu)使产生最佳的、实时的位置和能量估计成为可能,甚至可以从带有大量光电探测器的闪烁相机中得到。此外,机器学习估计的数学特性使它们非常适合用作列表模式机器学习图像重建中的列表条目。这个两步机器学习过程——使用机器学习估计一次获得列表数据,然后再次重建对象——允许对检测器模糊进行精确建模,并且可能大大提高重建的空间分辨率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ablation Study of Diffusion Model with Transformer Backbone for Low-count PET Denoising. Point-supervised Brain Tumor Segmentation with Box-prompted Medical Segment Anything Model. Subject-aware PET Denoising with Contrastive Adversarial Domain Generalization. Calibration Methodology of an Edgeless PET System Prototype. Tensor Tomography of Dark Field Scatter using X-ray Interferometry with Bi-prisms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1