A Nonlinear Thin-Wall Model for Vein Buckling.

Avione Y Lee, Hai-Chao Han
{"title":"A Nonlinear Thin-Wall Model for Vein Buckling.","authors":"Avione Y Lee,&nbsp;Hai-Chao Han","doi":"10.1007/s13239-010-0024-4","DOIUrl":null,"url":null,"abstract":"<p><p>Tortuous or twisted veins are often seen in the retina, cerebrum, and legs (varicose veins) of one-third of the aged population, but the underlying mechanisms are poorly understood. While the collapse of veins under external pressure has been well documented, the bent buckling of long vein segments has not been studied. The objectives of this study were to develop a biomechanical model of vein buckling under internal pressure and to predict the critical pressure. Veins were modeled as thin-walled nonlinear elastic tubes with the Fung exponential strain energy function. Our results demonstrated that veins buckle due to high blood pressure or low axial tension. High axial tension stabilized veins under internal pressure. Our buckling model estimated the critical pressure accurately compared to the experimental measurements. The buckling equation provides a useful tool for studying the development of tortuous veins.</p>","PeriodicalId":55275,"journal":{"name":"Cardiovascular Engineering (dordrecht, Netherlands)","volume":"1 4","pages":"282-289"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s13239-010-0024-4","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Engineering (dordrecht, Netherlands)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13239-010-0024-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

Tortuous or twisted veins are often seen in the retina, cerebrum, and legs (varicose veins) of one-third of the aged population, but the underlying mechanisms are poorly understood. While the collapse of veins under external pressure has been well documented, the bent buckling of long vein segments has not been studied. The objectives of this study were to develop a biomechanical model of vein buckling under internal pressure and to predict the critical pressure. Veins were modeled as thin-walled nonlinear elastic tubes with the Fung exponential strain energy function. Our results demonstrated that veins buckle due to high blood pressure or low axial tension. High axial tension stabilized veins under internal pressure. Our buckling model estimated the critical pressure accurately compared to the experimental measurements. The buckling equation provides a useful tool for studying the development of tortuous veins.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
脉状屈曲的非线性薄壁模型。
在三分之一的老年人中,视网膜、大脑和腿部经常可见静脉曲张(静脉曲张),但其潜在机制尚不清楚。虽然外界压力下的静脉塌陷已经有了很好的记录,但对长静脉段的弯曲屈曲尚未进行研究。本研究的目的是建立内压下静脉屈曲的生物力学模型,并预测临界压力。采用冯氏指数应变能函数将脉体建模为薄壁非线性弹性管。我们的结果表明,静脉屈曲由于高血压或低轴向张力。高轴向张力使脉内压稳定。与实验结果相比,我们的屈曲模型准确地估计了临界压力。屈曲方程为研究弯曲矿脉的发育提供了一个有用的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
3D Bioprinting of a Tissue Engineered Human Heart Tissue-Mimicking Materials for Cardiac Imaging Phantom—Section 2: From Fabrication to Optimization Square Root Design for Natural Frequency Module of Dynamic ECG Features—a Preliminary Study Tissue-Mimicking Materials for Cardiac Imaging Phantom—Section 1: From Conception to Materials Selection Biopolymers as Potential Carrier for Effervescent Reaction Based Drug Delivery System in Gastrointestinal Condition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1