{"title":"Sequential Support Vector Regression with Embedded Entropy for SNP Selection and Disease Classification.","authors":"Yulan Liang, Arpad Kelemen","doi":"10.1002/sam.10110","DOIUrl":null,"url":null,"abstract":"<p><p>Comprehensive evaluation of common genetic variations through association of SNP structure with common diseases on the genome-wide scale is currently a hot area in human genome research. For less costly and faster diagnostics, advanced computational approaches are needed to select the minimum SNPs with the highest prediction accuracy for common complex diseases. In this paper, we present a sequential support vector regression model with embedded entropy algorithm to deal with the redundancy for the selection of the SNPs that have best prediction performance of diseases. We implemented our proposed method for both SNP selection and disease classification, and applied it to simulation data sets and two real disease data sets. Results show that on the average, our proposed method outperforms the well known methods of Support Vector Machine Recursive Feature Elimination, logistic regression, CART, and logic regression based SNP selections for disease classification.</p>","PeriodicalId":48684,"journal":{"name":"Statistical Analysis and Data Mining","volume":"4 3","pages":"301-312"},"PeriodicalIF":2.1000,"publicationDate":"2011-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/sam.10110","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Analysis and Data Mining","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/sam.10110","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 6
Abstract
Comprehensive evaluation of common genetic variations through association of SNP structure with common diseases on the genome-wide scale is currently a hot area in human genome research. For less costly and faster diagnostics, advanced computational approaches are needed to select the minimum SNPs with the highest prediction accuracy for common complex diseases. In this paper, we present a sequential support vector regression model with embedded entropy algorithm to deal with the redundancy for the selection of the SNPs that have best prediction performance of diseases. We implemented our proposed method for both SNP selection and disease classification, and applied it to simulation data sets and two real disease data sets. Results show that on the average, our proposed method outperforms the well known methods of Support Vector Machine Recursive Feature Elimination, logistic regression, CART, and logic regression based SNP selections for disease classification.
期刊介绍:
Statistical Analysis and Data Mining addresses the broad area of data analysis, including statistical approaches, machine learning, data mining, and applications. Topics include statistical and computational approaches for analyzing massive and complex datasets, novel statistical and/or machine learning methods and theory, and state-of-the-art applications with high impact. Of special interest are articles that describe innovative analytical techniques, and discuss their application to real problems, in such a way that they are accessible and beneficial to domain experts across science, engineering, and commerce.
The focus of the journal is on papers which satisfy one or more of the following criteria:
Solve data analysis problems associated with massive, complex datasets
Develop innovative statistical approaches, machine learning algorithms, or methods integrating ideas across disciplines, e.g., statistics, computer science, electrical engineering, operation research.
Formulate and solve high-impact real-world problems which challenge existing paradigms via new statistical and/or computational models
Provide survey to prominent research topics.