Molecular computing by PNA:PNA duplex formation.

Filbert Totsingan, Rosangela Marchelli, Roberto Corradini
{"title":"Molecular computing by PNA:PNA duplex formation.","authors":"Filbert Totsingan,&nbsp;Rosangela Marchelli,&nbsp;Roberto Corradini","doi":"10.4161/adna.2.1.15459","DOIUrl":null,"url":null,"abstract":"<p><p>Molecular computing is potentially one of the most powerful tools for the development of massive parallel computing protocols. In the present paper, a first example of the use of PNA:PNA interactions in molecular computing is described. A series of short PNA sequences have been designed with a four base stretch coding for variables and solutions. Hybridization of the components in different combinations was tested both in solution and in a microarray format. A series of PNA representing the solutions were spotted on a microarray surface in order to simulate the hardware. A series of PNA representing the variables, labeled with TAMRA, were used to interrogate the device enabling to solve non-deterministic logic operations. The system was shown to be able to solve a two-variable equation with a high signal to noise ratio. This paper intends to provide a proof of principle that PNA, on account of their stability and specificity of binding, are most suitable for constructing organic-type computers.</p>","PeriodicalId":8444,"journal":{"name":"Artificial DNA: PNA & XNA","volume":"2 1","pages":"16-22"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4161/adna.2.1.15459","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial DNA: PNA & XNA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4161/adna.2.1.15459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Molecular computing is potentially one of the most powerful tools for the development of massive parallel computing protocols. In the present paper, a first example of the use of PNA:PNA interactions in molecular computing is described. A series of short PNA sequences have been designed with a four base stretch coding for variables and solutions. Hybridization of the components in different combinations was tested both in solution and in a microarray format. A series of PNA representing the solutions were spotted on a microarray surface in order to simulate the hardware. A series of PNA representing the variables, labeled with TAMRA, were used to interrogate the device enabling to solve non-deterministic logic operations. The system was shown to be able to solve a two-variable equation with a high signal to noise ratio. This paper intends to provide a proof of principle that PNA, on account of their stability and specificity of binding, are most suitable for constructing organic-type computers.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PNA分子计算:PNA双相结构。
分子计算可能是开发大规模并行计算协议最强大的工具之一。在本文中,第一个例子的使用PNA:PNA相互作用在分子计算描述。设计了一系列短的PNA序列,并对变量和解进行了四碱基延伸编码。在溶液和微阵列格式中测试了不同组合的组分的杂交。为了模拟硬件,在微阵列表面上标记了一系列代表解决方案的PNA。一系列表示变量的PNA,用TAMRA标记,用于询问设备,使其能够解决不确定的逻辑操作。结果表明,该系统能够求解高信噪比的双变量方程。本文拟从原理上证明PNA由于其结合的稳定性和特异性,最适合用于构建有机型计算机。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Purification and assembly of thermostable Cy5 labeled γ-PNAs into a 3D DNA nanocage. Effect of 2′-O-methyl/thiophosphonoacetate-modified antisense oligonucleotides on huntingtin expression in patient-derived cells Anomeric DNA quadruplexes. Synthesis and spectral characterization of environmentally responsive fluorescent deoxycytidine analogs. The genetic code. Rewritten, revised, repurposed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1