List-mode MLEM Image Reconstruction from 3D ML Position Estimates.

Luca Caucci, William C J Hunter, Lars R Furenlid, Harrison H Barrett
{"title":"List-mode MLEM Image Reconstruction from 3D ML Position Estimates.","authors":"Luca Caucci,&nbsp;William C J Hunter,&nbsp;Lars R Furenlid,&nbsp;Harrison H Barrett","doi":"10.1109/NSSMIC.2010.5874269","DOIUrl":null,"url":null,"abstract":"<p><p>Current thick detectors used in medical imaging allow recording many attributes, such as the 3D location of interaction within the scintillation crystal and the amount of energy deposited. An efficient way of dealing with these data is by storing them in list-mode (LM). To reconstruct the data, maximum-likelihood expectation-maximization (MLEM) is efficiently applied to the list-mode data, resulting in the list-mode maximum-likelihood expectation-maximization (LMMLEM) reconstruction algorithm.In this work, we consider a PET system consisting of two thick detectors facing each other. PMT outputs are collected for each coincidence event and are used to perform 3D maximum-likelihood (ML) position estimation of location of interaction. The mathematical properties of the ML estimation allow accurate modeling of the detector blur and provide a theoretical framework for the subsequent estimation step, namely the LMMLEM reconstruction. Indeed, a rigorous statistical model for the detector output can be obtained from calibration data and used in the calculation of the conditional probability density functions for the interaction location estimates.Our implementation of the 3D ML position estimation takes advantage of graphics processing unit (GPU) hardware and permits accurate real-time estimates of position of interaction. The LMMLEM algorithm is then applied to the list of position estimates, and the 3D radiotracer distribution is reconstructed on a voxel grid.</p>","PeriodicalId":73298,"journal":{"name":"IEEE Nuclear Science Symposium conference record. Nuclear Science Symposium","volume":"2010 ","pages":"2643-2647"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/NSSMIC.2010.5874269","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Nuclear Science Symposium conference record. Nuclear Science Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSSMIC.2010.5874269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Current thick detectors used in medical imaging allow recording many attributes, such as the 3D location of interaction within the scintillation crystal and the amount of energy deposited. An efficient way of dealing with these data is by storing them in list-mode (LM). To reconstruct the data, maximum-likelihood expectation-maximization (MLEM) is efficiently applied to the list-mode data, resulting in the list-mode maximum-likelihood expectation-maximization (LMMLEM) reconstruction algorithm.In this work, we consider a PET system consisting of two thick detectors facing each other. PMT outputs are collected for each coincidence event and are used to perform 3D maximum-likelihood (ML) position estimation of location of interaction. The mathematical properties of the ML estimation allow accurate modeling of the detector blur and provide a theoretical framework for the subsequent estimation step, namely the LMMLEM reconstruction. Indeed, a rigorous statistical model for the detector output can be obtained from calibration data and used in the calculation of the conditional probability density functions for the interaction location estimates.Our implementation of the 3D ML position estimation takes advantage of graphics processing unit (GPU) hardware and permits accurate real-time estimates of position of interaction. The LMMLEM algorithm is then applied to the list of position estimates, and the 3D radiotracer distribution is reconstructed on a voxel grid.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从3D ML位置估计的列表模式MLEM图像重建。
目前用于医学成像的厚探测器允许记录许多属性,例如闪烁晶体内相互作用的3D位置和沉积的能量量。处理这些数据的有效方法是将它们存储在列表模式(LM)中。为了重构数据,将极大似然期望最大化(maximum-likelihood expectation-maximization, MLEM)有效地应用于列表模式数据,得到列表模式最大似然期望最大化(LMMLEM)重构算法。在这项工作中,我们考虑了一个由两个相互面对的厚探测器组成的PET系统。收集每个巧合事件的PMT输出,并用于执行相互作用位置的3D最大似然(ML)位置估计。ML估计的数学性质允许对检测器模糊进行精确建模,并为后续估计步骤(即LMMLEM重建)提供理论框架。实际上,可以从校准数据中获得检测器输出的严格统计模型,并用于计算相互作用位置估计的条件概率密度函数。我们实现的3D ML位置估计利用了图形处理单元(GPU)硬件,并允许对交互位置进行准确的实时估计。然后将LMMLEM算法应用于位置估计列表,并在体素网格上重建三维放射性示踪剂分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ablation Study of Diffusion Model with Transformer Backbone for Low-count PET Denoising. Point-supervised Brain Tumor Segmentation with Box-prompted Medical Segment Anything Model. Subject-aware PET Denoising with Contrastive Adversarial Domain Generalization. Calibration Methodology of an Edgeless PET System Prototype. Tensor Tomography of Dark Field Scatter using X-ray Interferometry with Bi-prisms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1