Dynamic gene network reconstruction from gene expression data in mice after influenza A (H1N1) infection.

Konstantina Dimitrakopoulou, Charalampos Tsimpouris, George Papadopoulos, Claudia Pommerenke, Esther Wilk, Kyriakos N Sgarbas, Klaus Schughart, Anastasios Bezerianos
{"title":"Dynamic gene network reconstruction from gene expression data in mice after influenza A (H1N1) infection.","authors":"Konstantina Dimitrakopoulou,&nbsp;Charalampos Tsimpouris,&nbsp;George Papadopoulos,&nbsp;Claudia Pommerenke,&nbsp;Esther Wilk,&nbsp;Kyriakos N Sgarbas,&nbsp;Klaus Schughart,&nbsp;Anastasios Bezerianos","doi":"10.1186/2043-9113-1-27","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The immune response to viral infection is a temporal process, represented by a dynamic and complex network of gene and protein interactions. Here, we present a reverse engineering strategy aimed at capturing the temporal evolution of the underlying Gene Regulatory Networks (GRN). The proposed approach will be an enabling step towards comprehending the dynamic behavior of gene regulation circuitry and mapping the network structure transitions in response to pathogen stimuli.</p><p><strong>Results: </strong>We applied the Time Varying Dynamic Bayesian Network (TV-DBN) method for reconstructing the gene regulatory interactions based on time series gene expression data for the mouse C57BL/6J inbred strain after infection with influenza A H1N1 (PR8) virus. Initially, 3500 differentially expressed genes were clustered with the use of k-means algorithm. Next, the successive in time GRNs were built over the expression profiles of cluster centroids. Finally, the identified GRNs were examined with several topological metrics and available protein-protein and protein-DNA interaction data, transcription factor and KEGG pathway data.</p><p><strong>Conclusions: </strong>Our results elucidate the potential of TV-DBN approach in providing valuable insights into the temporal rewiring of the lung transcriptome in response to H1N1 virus.</p>","PeriodicalId":73663,"journal":{"name":"Journal of clinical bioinformatics","volume":"1 ","pages":"27"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/2043-9113-1-27","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of clinical bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/2043-9113-1-27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

Background: The immune response to viral infection is a temporal process, represented by a dynamic and complex network of gene and protein interactions. Here, we present a reverse engineering strategy aimed at capturing the temporal evolution of the underlying Gene Regulatory Networks (GRN). The proposed approach will be an enabling step towards comprehending the dynamic behavior of gene regulation circuitry and mapping the network structure transitions in response to pathogen stimuli.

Results: We applied the Time Varying Dynamic Bayesian Network (TV-DBN) method for reconstructing the gene regulatory interactions based on time series gene expression data for the mouse C57BL/6J inbred strain after infection with influenza A H1N1 (PR8) virus. Initially, 3500 differentially expressed genes were clustered with the use of k-means algorithm. Next, the successive in time GRNs were built over the expression profiles of cluster centroids. Finally, the identified GRNs were examined with several topological metrics and available protein-protein and protein-DNA interaction data, transcription factor and KEGG pathway data.

Conclusions: Our results elucidate the potential of TV-DBN approach in providing valuable insights into the temporal rewiring of the lung transcriptome in response to H1N1 virus.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于甲型H1N1流感感染后小鼠基因表达数据的动态基因网络重建。
背景:对病毒感染的免疫反应是一个动态的、复杂的基因和蛋白质相互作用网络的时间过程。在这里,我们提出了一种逆向工程策略,旨在捕捉潜在的基因调控网络(GRN)的时间进化。所提出的方法将是理解基因调控电路的动态行为和绘制响应病原体刺激的网络结构转变的有利步骤。结果:基于小鼠C57BL/6J自交系感染甲型H1N1 (PR8)病毒后的时间序列基因表达数据,应用时变动态贝叶斯网络(TV-DBN)方法重构了基因调控相互作用。首先,使用k-means算法对3500个差异表达基因进行聚类。其次,基于聚类质心的表达谱构建连续的实时grn。最后,用几种拓扑指标和可用的蛋白质-蛋白质和蛋白质- dna相互作用数据、转录因子和KEGG通路数据来检测鉴定的grn。结论:我们的研究结果阐明了TV-DBN方法的潜力,为研究H1N1病毒对肺转录组的时间重组提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Clinical research informatics (CRI): overview over new tools and services First Clinical Research Informatics (CRI) Solutions Day: advanced IT support from EU projects for clinical trials Mobile eHealth solution (ePRO) EHR4CR local workbench TRANSFoRm Data quality tool
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1