Analysis of T-wave Amplitude Adaptation to Heart Rate Using RR-binning of Long-Term ECG Recordings.

Computing in cardiology Pub Date : 2010-01-01
L Johannesen, Usl Grove, Js Sørensen, M Schmidt, C Graff, J-P Couderc
{"title":"Analysis of T-wave Amplitude Adaptation to Heart Rate Using RR-binning of Long-Term ECG Recordings.","authors":"L Johannesen,&nbsp;Usl Grove,&nbsp;Js Sørensen,&nbsp;M Schmidt,&nbsp;C Graff,&nbsp;J-P Couderc","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The prognosis of patients with coronary artery disease at the early stage of the disease is a challenge of modern cardiology. There is an urgent need to risk stratify these patients. Holter technology is a cheap and cost effective tool to evaluate electrical abnormalities in the heart. We propose to investigate T-amplitude adaptation to heart rate (HR) using RR-binning. We used daytime recordings from healthy subjects and subjects with acute myocardial infarction (AMI) from the Telemetric and Holter ECG Warehouse. The AMI subjects were divided into two groups based on location of their infarction (group A: anterior or anterior lateral, group B: inferior or inferior lateral). Both AMI groups had acute and stable phase recordings. Population-based T-adaptation to HR was observed for healthy subjects (R2 = 0.92) but was less pronounced for AMI subjects: [Formula: see text].</p>","PeriodicalId":72683,"journal":{"name":"Computing in cardiology","volume":"37 ","pages":"369-372"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3128376/pdf/nihms302674.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computing in cardiology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The prognosis of patients with coronary artery disease at the early stage of the disease is a challenge of modern cardiology. There is an urgent need to risk stratify these patients. Holter technology is a cheap and cost effective tool to evaluate electrical abnormalities in the heart. We propose to investigate T-amplitude adaptation to heart rate (HR) using RR-binning. We used daytime recordings from healthy subjects and subjects with acute myocardial infarction (AMI) from the Telemetric and Holter ECG Warehouse. The AMI subjects were divided into two groups based on location of their infarction (group A: anterior or anterior lateral, group B: inferior or inferior lateral). Both AMI groups had acute and stable phase recordings. Population-based T-adaptation to HR was observed for healthy subjects (R2 = 0.92) but was less pronounced for AMI subjects: [Formula: see text].

Abstract Image

Abstract Image

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用长期心电图记录的RR-binning分析t波振幅对心率的适应。
冠状动脉疾病早期患者的预后是现代心脏病学的一个挑战。迫切需要对这些患者进行风险分层。动态心电图技术是一种廉价且经济有效的评估心脏电异常的工具。我们建议使用rr -bin来研究t振幅对心率(HR)的适应性。我们使用了来自遥测和动态心电图仓库的健康受试者和急性心肌梗死(AMI)受试者的日间记录。AMI患者根据梗死部位分为两组(A组:前外侧或前外侧,B组:下外侧或下外侧)。两组均有急性期和稳定期记录。在健康受试者中观察到基于人群的HR t适应(R2 = 0.92),但在AMI受试者中不太明显:[公式:见文本]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
期刊最新文献
Transfer Learning for Improved Classification of Drivers in Atrial Fibrillation. Effects of Biventricular Pacing Locations on Anti-Tachycardia Pacing Success in a Patient-Specific Model. Deep Learning System for Left Ventricular Assist Device Candidate Assessment from Electrocardiograms. Capturing the Influence of Conduction Velocity on Epicardial Activation Patterns Using Uncertainty Quantification. Comparison of Machine Learning Detection of Low Left Ventricular Ejection Fraction Using Individual ECG Leads.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1