The whole range of hydrogen bonds in one crystal structure: neutron diffraction and charge-density studies of N,N-dimethylbiguanidinium bis(hydrogensquarate).
Mihaela Diana Şerb, Ruimin Wang, Martin Meven, Ulli Englert
{"title":"The whole range of hydrogen bonds in one crystal structure: neutron diffraction and charge-density studies of N,N-dimethylbiguanidinium bis(hydrogensquarate).","authors":"Mihaela Diana Şerb, Ruimin Wang, Martin Meven, Ulli Englert","doi":"10.1107/S0108768111043138","DOIUrl":null,"url":null,"abstract":"<p><p>N,N-Dimethylbiguanidinium bis(hydrogensquarate) features an impressive range of hydrogen bonds within the same crystal structure: neighbouring anions aggregate to a dianionic pair through two strong O-H···O interactions; one of these can be classified among the shortest hydrogen bonds ever studied. Cations and anions in this organic salt further interact via conventional N-H···O and nonclassical C-H···O contacts to an extended structure. As all these interactions occur in the same sample, the title compound is particularly suitable to monitor even subtle trends in hydrogen bonds. Neutron and high-resolution X-ray diffraction experiments have enabled us to determine the electron density precisely and to address its properties with an emphasis on the nature of the X-H···O interactions. Sensitive criteria such as the Laplacian of the electron density and energy densities in the bond-critical points reveal the incipient covalent character of the shortest O-H···O bond. These findings are in agreement with the precise geometry from neutron diffraction: the shortest hydrogen bond is also significantly more symmetric than the longer interactions.</p>","PeriodicalId":7107,"journal":{"name":"Acta Crystallographica Section B-structural Science","volume":"67 Pt 6","pages":"552-9"},"PeriodicalIF":1.9000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1107/S0108768111043138","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Crystallographica Section B-structural Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1107/S0108768111043138","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2011/11/17 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29
Abstract
N,N-Dimethylbiguanidinium bis(hydrogensquarate) features an impressive range of hydrogen bonds within the same crystal structure: neighbouring anions aggregate to a dianionic pair through two strong O-H···O interactions; one of these can be classified among the shortest hydrogen bonds ever studied. Cations and anions in this organic salt further interact via conventional N-H···O and nonclassical C-H···O contacts to an extended structure. As all these interactions occur in the same sample, the title compound is particularly suitable to monitor even subtle trends in hydrogen bonds. Neutron and high-resolution X-ray diffraction experiments have enabled us to determine the electron density precisely and to address its properties with an emphasis on the nature of the X-H···O interactions. Sensitive criteria such as the Laplacian of the electron density and energy densities in the bond-critical points reveal the incipient covalent character of the shortest O-H···O bond. These findings are in agreement with the precise geometry from neutron diffraction: the shortest hydrogen bond is also significantly more symmetric than the longer interactions.
期刊介绍:
Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials publishes scientific articles related to the structural science of compounds and materials in the widest sense. Knowledge of the arrangements of atoms, including their temporal variations and dependencies on temperature and pressure, is often the key to understanding physical and chemical phenomena and is crucial for the design of new materials and supramolecular devices. Acta Crystallographica B is the forum for the publication of such contributions. Scientific developments based on experimental studies as well as those based on theoretical approaches, including crystal-structure prediction, structure-property relations and the use of databases of crystal structures, are published.