Noble metal nanoparticles applications in cancer.

Journal of drug delivery Pub Date : 2012-01-01 Epub Date: 2011-10-05 DOI:10.1155/2012/751075
João Conde, Gonçalo Doria, Pedro Baptista
{"title":"Noble metal nanoparticles applications in cancer.","authors":"João Conde,&nbsp;Gonçalo Doria,&nbsp;Pedro Baptista","doi":"10.1155/2012/751075","DOIUrl":null,"url":null,"abstract":"<p><p>Nanotechnology has prompted new and improved materials for biomedical applications with particular emphasis in therapy and diagnostics. Special interest has been directed at providing enhanced molecular therapeutics for cancer, where conventional approaches do not effectively differentiate between cancerous and normal cells; that is, they lack specificity. This normally causes systemic toxicity and severe and adverse side effects with concomitant loss of quality of life. Because of their small size, nanoparticles can readily interact with biomolecules both at surface and inside cells, yielding better signals and target specificity for diagnostics and therapeutics. This way, a variety of nanoparticles with the possibility of diversified modification with biomolecules have been investigated for biomedical applications including their use in highly sensitive imaging assays, thermal ablation, and radiotherapy enhancement as well as drug and gene delivery and silencing. Here, we review the available noble metal nanoparticles for cancer therapy, with particular focus on those already being translated into clinical settings.</p>","PeriodicalId":15575,"journal":{"name":"Journal of drug delivery","volume":"2012 ","pages":"751075"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2012/751075","citationCount":"439","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of drug delivery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2012/751075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2011/10/5 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 439

Abstract

Nanotechnology has prompted new and improved materials for biomedical applications with particular emphasis in therapy and diagnostics. Special interest has been directed at providing enhanced molecular therapeutics for cancer, where conventional approaches do not effectively differentiate between cancerous and normal cells; that is, they lack specificity. This normally causes systemic toxicity and severe and adverse side effects with concomitant loss of quality of life. Because of their small size, nanoparticles can readily interact with biomolecules both at surface and inside cells, yielding better signals and target specificity for diagnostics and therapeutics. This way, a variety of nanoparticles with the possibility of diversified modification with biomolecules have been investigated for biomedical applications including their use in highly sensitive imaging assays, thermal ablation, and radiotherapy enhancement as well as drug and gene delivery and silencing. Here, we review the available noble metal nanoparticles for cancer therapy, with particular focus on those already being translated into clinical settings.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
贵金属纳米颗粒在癌症中的应用。
纳米技术促进了新的和改进的生物医学应用材料,特别是在治疗和诊断方面。特别感兴趣的是为癌症提供增强的分子治疗方法,传统方法不能有效区分癌细胞和正常细胞;也就是说,它们缺乏特异性。这通常会引起全身毒性和严重的不良副作用,并伴有生活质量的下降。由于它们的小尺寸,纳米颗粒可以很容易地与细胞表面和细胞内部的生物分子相互作用,为诊断和治疗提供更好的信号和目标特异性。通过这种方式,各种具有不同生物分子修饰可能性的纳米颗粒已经被研究用于生物医学应用,包括它们在高灵敏度成像分析、热消融、放射治疗增强以及药物和基因传递和沉默中的应用。在这里,我们回顾了可用于癌症治疗的贵金属纳米颗粒,特别关注那些已经转化为临床环境的纳米颗粒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of drug delivery
Journal of drug delivery PHARMACOLOGY & PHARMACY-
自引率
0.00%
发文量
0
期刊最新文献
Corrigendum to "Alkyl Length Effects on the DNA Transport Properties of Cu (II) and Zn(II) Metallovesicles: An In Vitro and In Vivo Study". Dry Powder and Budesonide Inhalation Suspension Deposition Rates in Asthmatic Airway-Obstruction Regions. Rate of Drug Coating Dissolution Determines In-Tissue Drug Retention and Durability of Biological Efficacy. Alkyl Length Effects on the DNA Transport Properties of Cu (II) and Zn(II) Metallovesicles: An In Vitro and In Vivo Study. Potential of Cocoa Pod Husk Pectin-Based Modified Release Capsules as a Carrier for Chronodelivery of Hydrocortisone in Sprague-Dawley Rats.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1