Different groups of metabolic genes cluster around early and late firing origins of replication in budding yeast.

Thomas W Spiesser, Edda Klipp
{"title":"Different groups of metabolic genes cluster around early and late firing origins of replication in budding yeast.","authors":"Thomas W Spiesser,&nbsp;Edda Klipp","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>DNA replication is a fundamental process that is tightly regulated during the cell cycle. In budding yeast it starts from multiple origins of replication and proceeds in a timely fashion according to a reproducible temporal program until the entire DNA is replicated exactly once per cell cycle. In this program an origin seems to have an inherent firing probability at a specific time in S-phase that is conserved over the population. However, what exactly determines the origin initiation time remains obscure. In this work, we analyze the gene content that clusters around replication origins following the assumption that inherent origin properties that determine staggered initiation times could potentially be mirrored in the close origin proximity. We perform a Gene Ontology term enrichment test and find that metabolic genes are significantly over-represented in the regions that are close to the starting points of DNA replication. Furthermore, functional analysis also reveals that catabolic genes cluster around early firing origins, whereas anabolic genes can rather be found in the proximity of late firing origins of replication. We speculate that, in budding yeast, gene function around replication origins correlates with their intrinsic probability to initiate DNA replication at a given point in S-phase.</p>","PeriodicalId":73143,"journal":{"name":"Genome informatics. International Conference on Genome Informatics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome informatics. International Conference on Genome Informatics","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

DNA replication is a fundamental process that is tightly regulated during the cell cycle. In budding yeast it starts from multiple origins of replication and proceeds in a timely fashion according to a reproducible temporal program until the entire DNA is replicated exactly once per cell cycle. In this program an origin seems to have an inherent firing probability at a specific time in S-phase that is conserved over the population. However, what exactly determines the origin initiation time remains obscure. In this work, we analyze the gene content that clusters around replication origins following the assumption that inherent origin properties that determine staggered initiation times could potentially be mirrored in the close origin proximity. We perform a Gene Ontology term enrichment test and find that metabolic genes are significantly over-represented in the regions that are close to the starting points of DNA replication. Furthermore, functional analysis also reveals that catabolic genes cluster around early firing origins, whereas anabolic genes can rather be found in the proximity of late firing origins of replication. We speculate that, in budding yeast, gene function around replication origins correlates with their intrinsic probability to initiate DNA replication at a given point in S-phase.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在出芽酵母中,不同的代谢基因群围绕着早期和晚期的复制起始点聚集。
DNA复制是细胞周期中受到严格调控的基本过程。在出芽酵母中,它从多个复制起点开始,并根据可复制的时间程序及时进行,直到整个DNA在每个细胞周期中精确复制一次。在这个程序中,原点似乎在s期的特定时间有一个固有的发射概率,这个概率在总体上是守恒的。然而,究竟是什么决定了起源起始时间仍然是一个谜。在这项工作中,我们分析了围绕复制起点聚集的基因内容,假设固有的起点属性决定了交错起始时间,可能反映在接近的起点上。我们进行了基因本体术语富集测试,发现代谢基因在接近DNA复制起点的区域显着过度代表。此外,功能分析还表明,分解代谢基因聚集在早期发射起源周围,而合成代谢基因则可以在复制的晚期发射起源附近找到。我们推测,在出芽酵母中,围绕复制起点的基因功能与它们在s期某一给定点启动DNA复制的内在概率相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Docking-calculation-based method for predicting protein-RNA interactions. Sign: large-scale gene network estimation environment for high performance computing. Linear regression models predicting strength of transcriptional activity of promoters. Database for crude drugs and Kampo medicine. Mechanism of cell cycle disruption by multiple p53 pulses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1