Structure and Function of the Small MutS-Related Domain.

Molecular biology international Pub Date : 2011-01-01 Epub Date: 2011-07-19 DOI:10.4061/2011/691735
Kenji Fukui, Seiki Kuramitsu
{"title":"Structure and Function of the Small MutS-Related Domain.","authors":"Kenji Fukui,&nbsp;Seiki Kuramitsu","doi":"10.4061/2011/691735","DOIUrl":null,"url":null,"abstract":"<p><p>MutS family proteins are widely distributed in almost all organisms from bacteria to human and play central roles in various DNA transactions such as DNA mismatch repair and recombinational events. The small MutS-related (Smr) domain was originally found in the C-terminal domain of an antirecombination protein, MutS2, a member of the MutS family. MutS2 is thought to suppress homologous recombination by endonucleolytic resolution of early intermediates in the process. The endonuclease activity of MutS2 is derived from the Smr domain. Interestingly, sequences homologous to the Smr domain are abundant in a variety of proteins other than MutS2 and can be classified into 3 subfamilies. Recently, the tertiary structures and endonuclease activities of all 3 Smr subfamilies were reported. In this paper, we review the biochemical characteristics and structures of the Smr domains as well as cellular functions of the Smr-containing proteins.</p>","PeriodicalId":74217,"journal":{"name":"Molecular biology international","volume":"2011 ","pages":"691735"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3200294/pdf/","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular biology international","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4061/2011/691735","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2011/7/19 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

Abstract

MutS family proteins are widely distributed in almost all organisms from bacteria to human and play central roles in various DNA transactions such as DNA mismatch repair and recombinational events. The small MutS-related (Smr) domain was originally found in the C-terminal domain of an antirecombination protein, MutS2, a member of the MutS family. MutS2 is thought to suppress homologous recombination by endonucleolytic resolution of early intermediates in the process. The endonuclease activity of MutS2 is derived from the Smr domain. Interestingly, sequences homologous to the Smr domain are abundant in a variety of proteins other than MutS2 and can be classified into 3 subfamilies. Recently, the tertiary structures and endonuclease activities of all 3 Smr subfamilies were reported. In this paper, we review the biochemical characteristics and structures of the Smr domains as well as cellular functions of the Smr-containing proteins.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
muts相关小域的结构与功能。
MutS家族蛋白广泛存在于从细菌到人类的几乎所有生物中,并在DNA错配修复和重组事件等各种DNA交易中发挥核心作用。小的MutS相关(Smr)结构域最初发现于抗重组蛋白MutS2的c端结构域,MutS2是MutS家族的一员。MutS2被认为通过核内溶解早期中间体来抑制同源重组。MutS2的内切酶活性来源于Smr结构域。有趣的是,Smr结构域的同源序列在除MutS2以外的多种蛋白质中都很丰富,可分为3个亚家族。最近报道了所有3个Smr亚家族的三级结构和内切酶活性。本文综述了含Smr结构域的生物化学特征和结构,以及含Smr蛋白的细胞功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Role of B Cell Development Marker CD10 in Cancer Progression and Prognosis Drosophila Enhancer of Rudimentary Homolog, ERH, Is a Binding Partner of RPS3, RPL19, and DDIT4, Suggesting a Mechanism for the Nuclear Localization of ERH Cloning, Sequencing, and the Expression of the Elusive Sarcomeric TPM4α Isoform in Humans Molecular Characterization of Human Rotavirus from Children with Diarrhoeal Disease in Sokoto State, Nigeria Soluble Expression and Characterization of Biologically Active Bacillus anthracis Protective Antigen in Escherichia coli
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1