Marta Kasunič, Anton Meden, Srečo D Škapin, Danilo Suvorov, Amalija Golobič
{"title":"Structure of LaTi2Al9O19 and reanalysis of the crystal structure of La3Ti5Al15O37.","authors":"Marta Kasunič, Anton Meden, Srečo D Škapin, Danilo Suvorov, Amalija Golobič","doi":"10.1107/S0108768111039759","DOIUrl":null,"url":null,"abstract":"<p><p>The non-perovskite compound LaTi(2)Al(9)O(19) was synthesized and structurally characterized by conventional X-ray powder diffraction and shown to be isostructural with SrTi(3)Al(8)O(19), as confirmed by bond-valence sum calculations. The dielectric properties of LaTi(2)Al(9)O(19) at 1 MHz were measured. The crystal structure of La(3)Ti(5)Al(15)O(37), which is referred to as the most complex structure solved ab initio from X-ray powder diffraction (XRPD) to date, is shown to be incorrect.</p>","PeriodicalId":7107,"journal":{"name":"Acta Crystallographica Section B-structural Science","volume":"67 Pt 6","pages":"455-60"},"PeriodicalIF":1.9000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1107/S0108768111039759","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Crystallographica Section B-structural Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1107/S0108768111039759","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2011/10/13 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
The non-perovskite compound LaTi(2)Al(9)O(19) was synthesized and structurally characterized by conventional X-ray powder diffraction and shown to be isostructural with SrTi(3)Al(8)O(19), as confirmed by bond-valence sum calculations. The dielectric properties of LaTi(2)Al(9)O(19) at 1 MHz were measured. The crystal structure of La(3)Ti(5)Al(15)O(37), which is referred to as the most complex structure solved ab initio from X-ray powder diffraction (XRPD) to date, is shown to be incorrect.
期刊介绍:
Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials publishes scientific articles related to the structural science of compounds and materials in the widest sense. Knowledge of the arrangements of atoms, including their temporal variations and dependencies on temperature and pressure, is often the key to understanding physical and chemical phenomena and is crucial for the design of new materials and supramolecular devices. Acta Crystallographica B is the forum for the publication of such contributions. Scientific developments based on experimental studies as well as those based on theoretical approaches, including crystal-structure prediction, structure-property relations and the use of databases of crystal structures, are published.