Majid Mohammad Beigi, Mohaddeseh Behjati, Hassan Mohabatkar
{"title":"Prediction of metalloproteinase family based on the concept of Chou's pseudo amino acid composition using a machine learning approach.","authors":"Majid Mohammad Beigi, Mohaddeseh Behjati, Hassan Mohabatkar","doi":"10.1007/s10969-011-9120-4","DOIUrl":null,"url":null,"abstract":"<p><p>Matrix metalloproteinase (MMPs) and disintegrin and metalloprotease (ADAMs) belong to the zinc-dependent metalloproteinase family of proteins. These proteins participate in various physiological and pathological states. Thus, prediction of these proteins using amino acid sequence would be helpful. We have developed a method to predict these proteins based on the features derived from Chou's pseudo amino acid composition (PseAAC) server and support vector machine (SVM) as a powerful machine learning approach. With this method, for ADAMs and MMPs families, an overall accuracy and Matthew's correlation coefficient (MCC) of 95.89 and 0.90% were achieved respectively. Furthermore, the method is able to predict two major subclasses of MMP family; Furin-activated secreted MMPs and Type II trans-membrane; with MCC of 0.89 and 0.91%, respectively. The overall accuracy for Furin-activated secreted MMPs and Type II trans-membrane was 98.18 and 99.07, respectively. Our data demonstrates an effective classification of Metalloproteinase family based on the concept of PseAAC and SVM.</p>","PeriodicalId":73957,"journal":{"name":"Journal of structural and functional genomics","volume":"12 4","pages":"191-7"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10969-011-9120-4","citationCount":"111","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of structural and functional genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10969-011-9120-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2011/12/3 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 111
Abstract
Matrix metalloproteinase (MMPs) and disintegrin and metalloprotease (ADAMs) belong to the zinc-dependent metalloproteinase family of proteins. These proteins participate in various physiological and pathological states. Thus, prediction of these proteins using amino acid sequence would be helpful. We have developed a method to predict these proteins based on the features derived from Chou's pseudo amino acid composition (PseAAC) server and support vector machine (SVM) as a powerful machine learning approach. With this method, for ADAMs and MMPs families, an overall accuracy and Matthew's correlation coefficient (MCC) of 95.89 and 0.90% were achieved respectively. Furthermore, the method is able to predict two major subclasses of MMP family; Furin-activated secreted MMPs and Type II trans-membrane; with MCC of 0.89 and 0.91%, respectively. The overall accuracy for Furin-activated secreted MMPs and Type II trans-membrane was 98.18 and 99.07, respectively. Our data demonstrates an effective classification of Metalloproteinase family based on the concept of PseAAC and SVM.