Brain cancer prognosis: independent validation of a clinical bioinformatics approach.

Raffaele Fronza, Michele Tramonti, William R Atchley, Christine Nardini
{"title":"Brain cancer prognosis: independent validation of a clinical bioinformatics approach.","authors":"Raffaele Fronza,&nbsp;Michele Tramonti,&nbsp;William R Atchley,&nbsp;Christine Nardini","doi":"10.1186/2043-9113-2-2","DOIUrl":null,"url":null,"abstract":"<p><p> Translational and evidence based medicine can take advantage of biotechnology advances that offer a fast growing variety of high-throughput data for screening molecular activities of genomic, transcriptional, post-transcriptional and translational observations. The clinical information hidden in these data can be clarified with clinical bioinformatics approaches. We have recently proposed a method to analyze different layers of high-throughput (omic) data to preserve the emergent properties that appear in the cellular system when all molecular levels are interacting. We show here that this method applied to brain cancer data can uncover properties (i.e. molecules related to protective versus risky features in different types of brain cancers) that have been independently validated as survival markers, with potential important application in clinical practice.</p>","PeriodicalId":73663,"journal":{"name":"Journal of clinical bioinformatics","volume":"2 ","pages":"2"},"PeriodicalIF":0.0000,"publicationDate":"2012-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/2043-9113-2-2","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of clinical bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/2043-9113-2-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Translational and evidence based medicine can take advantage of biotechnology advances that offer a fast growing variety of high-throughput data for screening molecular activities of genomic, transcriptional, post-transcriptional and translational observations. The clinical information hidden in these data can be clarified with clinical bioinformatics approaches. We have recently proposed a method to analyze different layers of high-throughput (omic) data to preserve the emergent properties that appear in the cellular system when all molecular levels are interacting. We show here that this method applied to brain cancer data can uncover properties (i.e. molecules related to protective versus risky features in different types of brain cancers) that have been independently validated as survival markers, with potential important application in clinical practice.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
脑癌预后:临床生物信息学方法的独立验证。
转化医学和循证医学可以利用生物技术的进步,为筛选基因组、转录、转录后和转化观察的分子活动提供快速增长的各种高通量数据。这些数据中隐藏的临床信息可以用临床生物信息学方法来阐明。我们最近提出了一种方法来分析不同层的高通量(组学)数据,以保存当所有分子水平相互作用时出现在细胞系统中的涌现特性。我们在这里表明,将这种方法应用于脑癌数据可以揭示特性(即不同类型脑癌中与保护性和危险特征相关的分子),这些特性已被独立验证为生存标记,在临床实践中具有潜在的重要应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Clinical research informatics (CRI): overview over new tools and services First Clinical Research Informatics (CRI) Solutions Day: advanced IT support from EU projects for clinical trials Mobile eHealth solution (ePRO) EHR4CR local workbench TRANSFoRm Data quality tool
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1