Diagnostic utility of a multiplex RT-PCR assay in detecting fusion transcripts from recurrent genetic abnormalities of acute leukemia by WHO 2008 classification.
Min-Jung Song, Hee-Jin Kim, Chang-Hun Park, Sun-Kyung Kim, Chang-Seok Ki, Jong-Won Kim, Sun-Hee Kim
{"title":"Diagnostic utility of a multiplex RT-PCR assay in detecting fusion transcripts from recurrent genetic abnormalities of acute leukemia by WHO 2008 classification.","authors":"Min-Jung Song, Hee-Jin Kim, Chang-Hun Park, Sun-Kyung Kim, Chang-Seok Ki, Jong-Won Kim, Sun-Hee Kim","doi":"10.1097/PDM.0b013e3182319ebe","DOIUrl":null,"url":null,"abstract":"<p><p>Fusion transcripts (FT) from chromosomal rearrangements are key culprits in acute leukemia, with genotype-phenotype correlations including prognostic implications. Here, we report our experience of a commercially available platform utilizing multiplex reverse-transcriptase polymerase chain reaction (RT-PCR), HemaVision, in 309 consecutive patients with acute leukemia. A total of 108 patients (35%) were diagnosed as having acute leukemia with recurrent genetic abnormalities by the World Health Organization 2008 classification. The multiplex RT-PCR platform, detected 12 different FT in 92 (85.2%; 92/108), with a 99% concordance rate with conventional cytogenetics/fluorescence in situ hybridization. Additional information obtained from the multiplex RT-PCR assay included transcript heterogeneity and novel splice variants of FT. In addition, the RT-PCR assay targeting specific FT could be used for monitoring minimal residual disease. HemaVision is a robust diagnostic platform in detecting FT in routine clinical laboratories both at initial diagnosis and for disease monitoring.</p>","PeriodicalId":11235,"journal":{"name":"Diagnostic Molecular Pathology","volume":"21 1","pages":"40-4"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1097/PDM.0b013e3182319ebe","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostic Molecular Pathology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1097/PDM.0b013e3182319ebe","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
Fusion transcripts (FT) from chromosomal rearrangements are key culprits in acute leukemia, with genotype-phenotype correlations including prognostic implications. Here, we report our experience of a commercially available platform utilizing multiplex reverse-transcriptase polymerase chain reaction (RT-PCR), HemaVision, in 309 consecutive patients with acute leukemia. A total of 108 patients (35%) were diagnosed as having acute leukemia with recurrent genetic abnormalities by the World Health Organization 2008 classification. The multiplex RT-PCR platform, detected 12 different FT in 92 (85.2%; 92/108), with a 99% concordance rate with conventional cytogenetics/fluorescence in situ hybridization. Additional information obtained from the multiplex RT-PCR assay included transcript heterogeneity and novel splice variants of FT. In addition, the RT-PCR assay targeting specific FT could be used for monitoring minimal residual disease. HemaVision is a robust diagnostic platform in detecting FT in routine clinical laboratories both at initial diagnosis and for disease monitoring.
期刊介绍:
Diagnostic Molecular Pathology focuses on providing clinical and academic pathologists with coverage of the latest molecular technologies, timely reviews of established techniques, and papers on the applications of these methods to all aspects of surgical pathology and laboratory medicine. It publishes original, peer-reviewed contributions on molecular probes for diagnosis, such as tumor suppressor genes, oncogenes, the polymerase chain reaction (PCR), and in situ hybridization. Articles demonstrate how these highly sensitive techniques can be applied for more accurate diagnosis.