Axonal transport analysis using Multitemporal Association Tracking.

Q4 Pharmacology, Toxicology and Pharmaceutics International Journal of Computational Biology and Drug Design Pub Date : 2012-01-01 Epub Date: 2012-03-21 DOI:10.1504/IJCBDD.2012.045950
Mark R Winter, Cheng Fang, Gary Banker, Badrinath Roysam, Andrew R Cohen
{"title":"Axonal transport analysis using Multitemporal Association Tracking.","authors":"Mark R Winter,&nbsp;Cheng Fang,&nbsp;Gary Banker,&nbsp;Badrinath Roysam,&nbsp;Andrew R Cohen","doi":"10.1504/IJCBDD.2012.045950","DOIUrl":null,"url":null,"abstract":"<p><p>Multitemporal Association Tracking (MAT) is a new graph-based method for multitarget tracking in biological applications that reduces the error rate and implementation complexity compared to approaches based on bipartite matching. The data association problem is solved over a window of future detection data using a graph-based cost function that approximates the Bayesian a posteriori association probability. MAT has been applied to hundreds of image sequences, tracking organelle and vesicles to quantify the deficiencies in axonal transport that can accompany neurodegenerative disorders such as Huntington's Disease and Multiple Sclerosis and to quantify changes in transport in response to therapeutic interventions.</p>","PeriodicalId":39227,"journal":{"name":"International Journal of Computational Biology and Drug Design","volume":"5 1","pages":"35-48"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/IJCBDD.2012.045950","citationCount":"41","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Biology and Drug Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJCBDD.2012.045950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/3/21 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 41

Abstract

Multitemporal Association Tracking (MAT) is a new graph-based method for multitarget tracking in biological applications that reduces the error rate and implementation complexity compared to approaches based on bipartite matching. The data association problem is solved over a window of future detection data using a graph-based cost function that approximates the Bayesian a posteriori association probability. MAT has been applied to hundreds of image sequences, tracking organelle and vesicles to quantify the deficiencies in axonal transport that can accompany neurodegenerative disorders such as Huntington's Disease and Multiple Sclerosis and to quantify changes in transport in response to therapeutic interventions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用多时相关联跟踪进行轴突运输分析。
多时间关联跟踪(multi - temporal Association Tracking, MAT)是一种新的基于图的生物多目标跟踪方法,与基于二部匹配的方法相比,它降低了错误率和实现复杂度。数据关联问题通过使用近似贝叶斯后验关联概率的基于图的成本函数来解决未来检测数据的窗口。MAT已应用于数百个图像序列,跟踪细胞器和囊泡,以量化伴随神经退行性疾病(如亨廷顿病和多发性硬化症)的轴突运输缺陷,并量化响应治疗干预的运输变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Computational Biology and Drug Design
International Journal of Computational Biology and Drug Design Pharmacology, Toxicology and Pharmaceutics-Drug Discovery
CiteScore
1.00
自引率
0.00%
发文量
8
期刊最新文献
Assessment and Validation of Emulgel Based Salicylic acid Formulation Development to Drug release and Optimization by Statistical Design EyeRIS: Image-Based Identification of Goats using Iris Advanced DEEPCNN Breast Cancer Mammogram Image Detection and Classification with Butterfly Optimization Algorithm A Unique Noise Detector Developed for the Filtering of X-Ray Images of Bone Fractures Residue Interaction Network analysis and Molecular dynamics simulation of 6K Viroporin: Chikungunya Virus Channel Proteins
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1