Signaling mechanisms in the regulation of renal matrix metabolism in diabetes.

Experimental Diabetes Research Pub Date : 2012-01-01 Epub Date: 2012-02-19 DOI:10.1155/2012/749812
Meenalakshmi M Mariappan
{"title":"Signaling mechanisms in the regulation of renal matrix metabolism in diabetes.","authors":"Meenalakshmi M Mariappan","doi":"10.1155/2012/749812","DOIUrl":null,"url":null,"abstract":"<p><p>Renal hypertrophy and accumulation of extracellular matrix proteins are among cardinal manifestations of diabetic nephropathy. TGF beta system has been implicated in the pathogenesis of these manifestations. Among signaling pathways activated in the kidney in diabetes, mTOR- (mammalian target of rapamycin-)regulated pathways are pivotal in orchestrating high glucose-induced production of ECM proteins leading to functional and structural changes in the kidney culminating in adverse outcomes. Understanding signaling pathways that influence individual matrix protein expression could lead to the development of new interventional strategies. This paper will highlight some of the diverse components of the signaling network stimulated by hyperglycemia with an emphasis on extracellular matrix protein metabolism in the kidney in diabetes.</p>","PeriodicalId":12109,"journal":{"name":"Experimental Diabetes Research","volume":"2012 ","pages":"749812"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2012/749812","citationCount":"49","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Diabetes Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2012/749812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/2/19 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49

Abstract

Renal hypertrophy and accumulation of extracellular matrix proteins are among cardinal manifestations of diabetic nephropathy. TGF beta system has been implicated in the pathogenesis of these manifestations. Among signaling pathways activated in the kidney in diabetes, mTOR- (mammalian target of rapamycin-)regulated pathways are pivotal in orchestrating high glucose-induced production of ECM proteins leading to functional and structural changes in the kidney culminating in adverse outcomes. Understanding signaling pathways that influence individual matrix protein expression could lead to the development of new interventional strategies. This paper will highlight some of the diverse components of the signaling network stimulated by hyperglycemia with an emphasis on extracellular matrix protein metabolism in the kidney in diabetes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
糖尿病患者肾基质代谢调节的信号机制。
肾脏肥大和细胞外基质蛋白积聚是糖尿病肾病的主要表现。TGF β系统参与了这些表现的发病机制。在糖尿病肾脏激活的信号通路中,mTOR-(哺乳动物雷帕霉素靶蛋白)调控通路在协调高糖诱导的ECM蛋白产生中起关键作用,导致肾脏功能和结构变化,最终导致不良后果。了解影响个体基质蛋白表达的信号通路可能会导致新的干预策略的发展。本文将重点介绍由高血糖刺激的信号网络的一些不同组成部分,重点介绍糖尿病肾脏的细胞外基质蛋白代谢。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Experimental Diabetes Research
Experimental Diabetes Research 医学-内分泌学与代谢
自引率
0.00%
发文量
0
审稿时长
3-8 weeks
期刊最新文献
Nontraditional Therapy of Diabetes and Its Complications In Vitro Investigation and Evaluation of Novel Drug Based on Polyherbal Extract against Type 2 Diabetes Prevalence and Risk Factors Associated with Type 2 Diabetes in Elderly Patients Aged 45-80 Years at Kanungu District Erratum to “Circulating Levels of MicroRNA from Children with Newly Diagnosed Type 1 Diabetes and Healthy Controls: Evidence That miR-25 Associates to Residual Beta-Cell Function and Glycaemic Control during Disease Progression” A PEDF-derived peptide inhibits retinal neovascularization and blocks mobilization of bone marrow-derived endothelial progenitor cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1