Kinematic Bézier Maps.

S Ulbrich, V R de Angulo, T Asfour, C Torras, R Dillmann
{"title":"Kinematic Bézier Maps.","authors":"S Ulbrich,&nbsp;V R de Angulo,&nbsp;T Asfour,&nbsp;C Torras,&nbsp;R Dillmann","doi":"10.1109/TSMCB.2012.2188507","DOIUrl":null,"url":null,"abstract":"<p><p>The kinematics of a robot with many degrees of freedom is a very complex function. Learning this function for a large workspace with a good precision requires a huge number of training samples, i.e., robot movements. In this paper, we introduce the Kinematic Bézier Map (KB-Map), a parameterizable model without the generality of other systems but whose structure readily incorporates some of the geometric constraints of a kinematic function. In this way, the number of training samples required is drastically reduced. Moreover, the simplicity of the model reduces learning to solving a linear least squares problem. Systematic experiments have been carried out showing the excellent interpolation and extrapolation capabilities of KB-Maps and their relatively low sensitivity to noise. </p>","PeriodicalId":55006,"journal":{"name":"IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics","volume":" ","pages":"1215-30"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TSMCB.2012.2188507","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSMCB.2012.2188507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/4/3 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

The kinematics of a robot with many degrees of freedom is a very complex function. Learning this function for a large workspace with a good precision requires a huge number of training samples, i.e., robot movements. In this paper, we introduce the Kinematic Bézier Map (KB-Map), a parameterizable model without the generality of other systems but whose structure readily incorporates some of the geometric constraints of a kinematic function. In this way, the number of training samples required is drastically reduced. Moreover, the simplicity of the model reduces learning to solving a linear least squares problem. Systematic experiments have been carried out showing the excellent interpolation and extrapolation capabilities of KB-Maps and their relatively low sensitivity to noise.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
动态bsamzier地图。
多自由度机器人的运动学是一个非常复杂的函数。对于一个大的工作空间,以良好的精度学习这个函数需要大量的训练样本,即机器人的运动。在本文中,我们介绍了运动学bsamizier映射(KB-Map),这是一种可参数化的模型,没有其他系统的一般性,但其结构很容易包含运动函数的一些几何约束。这样,所需的训练样本数量就大大减少了。此外,该模型的简单性将学习简化为求解线性最小二乘问题。系统的实验表明,KB-Maps具有良好的插值和外推能力,对噪声的敏感性相对较低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
6.0 months
期刊最新文献
Alternative Tests for the Selection of Model Variables Operations Research Optimization of neural networks using variable structure systems. Gait recognition across various walking speeds using higher order shape configuration based on a differential composition model. Integrating instance selection, instance weighting, and feature weighting for nearest neighbor classifiers by coevolutionary algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1