The influence of autonomic dysfunction associated with aging and type 2 diabetes on daily life activities.

Experimental Diabetes Research Pub Date : 2012-01-01 Epub Date: 2012-04-09 DOI:10.1155/2012/657103
Jerrold Petrofsky, Lee Berk, Hani Al-Nakhli
{"title":"The influence of autonomic dysfunction associated with aging and type 2 diabetes on daily life activities.","authors":"Jerrold Petrofsky,&nbsp;Lee Berk,&nbsp;Hani Al-Nakhli","doi":"10.1155/2012/657103","DOIUrl":null,"url":null,"abstract":"<p><p>Type 2 diabetes (T2D) and ageing have well documented effects on every organ in the body. In T2D the autonomic nervous system is impaired due to damage to neurons, sensory receptors, synapses and the blood vessels. This paper will concentrate on how autonomic impairment alters normal daily activities. Impairments include the response of the blood vessels to heat, sweating, heat transfer, whole body heating, orthostatic intolerance, balance, and gait. Because diabetes is more prevalent in older individuals, the effects of ageing will be examined. Beginning with endothelial dysfunction, blood vessels have impairment in their ability to vasodilate. With this and synaptic damage, the autonomic nervous system cannot compensate for effectors such as pressure on and heating of the skin. This and reduced ability of the heart to respond to stress, reduces autonomic orthostatic compensation. Diminished sweating causes the skin and core temperature to be high during whole body heating. Impaired orthostatic tolerance, impaired vision and vestibular sensing, causes poor balance and impaired gait. Overall, people with T2D must be made aware and counseled relative to the potential consequence of these impairments.</p>","PeriodicalId":12109,"journal":{"name":"Experimental Diabetes Research","volume":"2012 ","pages":"657103"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2012/657103","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Diabetes Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2012/657103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/4/9 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

Abstract

Type 2 diabetes (T2D) and ageing have well documented effects on every organ in the body. In T2D the autonomic nervous system is impaired due to damage to neurons, sensory receptors, synapses and the blood vessels. This paper will concentrate on how autonomic impairment alters normal daily activities. Impairments include the response of the blood vessels to heat, sweating, heat transfer, whole body heating, orthostatic intolerance, balance, and gait. Because diabetes is more prevalent in older individuals, the effects of ageing will be examined. Beginning with endothelial dysfunction, blood vessels have impairment in their ability to vasodilate. With this and synaptic damage, the autonomic nervous system cannot compensate for effectors such as pressure on and heating of the skin. This and reduced ability of the heart to respond to stress, reduces autonomic orthostatic compensation. Diminished sweating causes the skin and core temperature to be high during whole body heating. Impaired orthostatic tolerance, impaired vision and vestibular sensing, causes poor balance and impaired gait. Overall, people with T2D must be made aware and counseled relative to the potential consequence of these impairments.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
与衰老和2型糖尿病相关的自主神经功能障碍对日常生活活动的影响
2型糖尿病(T2D)和衰老对身体的每个器官都有很好的影响。在T2D中,自主神经系统由于神经元、感觉受体、突触和血管的损伤而受损。本文将集中讨论自主神经损伤如何改变正常的日常活动。损伤包括血管对热的反应、出汗、热传递、全身发热、站立不耐受、平衡和步态。由于糖尿病在老年人中更为普遍,因此将对衰老的影响进行研究。从内皮功能障碍开始,血管舒张能力受损。由于这种情况和突触损伤,自主神经系统无法补偿皮肤上的压力和加热等效应。这和心脏对压力的反应能力降低,减少了自主直立补偿。出汗减少导致皮肤和核心温度在整个身体加热过程中升高。直立耐受性受损,视力和前庭感觉受损,导致平衡不良和步态受损。总的来说,必须让患有T2D的人意识到这些损伤的潜在后果,并向他们提供咨询。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Experimental Diabetes Research
Experimental Diabetes Research 医学-内分泌学与代谢
自引率
0.00%
发文量
0
审稿时长
3-8 weeks
期刊最新文献
Nontraditional Therapy of Diabetes and Its Complications In Vitro Investigation and Evaluation of Novel Drug Based on Polyherbal Extract against Type 2 Diabetes Prevalence and Risk Factors Associated with Type 2 Diabetes in Elderly Patients Aged 45-80 Years at Kanungu District Erratum to “Circulating Levels of MicroRNA from Children with Newly Diagnosed Type 1 Diabetes and Healthy Controls: Evidence That miR-25 Associates to Residual Beta-Cell Function and Glycaemic Control during Disease Progression” A PEDF-derived peptide inhibits retinal neovascularization and blocks mobilization of bone marrow-derived endothelial progenitor cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1