Recognizing Emotions From an Ensemble of Features.

U Tariq, Kai-Hsiang Lin, Zhen Li, Xi Zhou, Zhaowen Wang, Vuong Le, T S Huang, Xutao Lv, T X Han
{"title":"Recognizing Emotions From an Ensemble of Features.","authors":"U Tariq,&nbsp;Kai-Hsiang Lin,&nbsp;Zhen Li,&nbsp;Xi Zhou,&nbsp;Zhaowen Wang,&nbsp;Vuong Le,&nbsp;T S Huang,&nbsp;Xutao Lv,&nbsp;T X Han","doi":"10.1109/TSMCB.2012.2194701","DOIUrl":null,"url":null,"abstract":"<p><p>This paper details the authors' efforts to push the baseline of emotion recognition performance on the Geneva Multimodal Emotion Portrayals (GEMEP) Facial Expression Recognition and Analysis database. Both subject-dependent and subject-independent emotion recognition scenarios are addressed in this paper. The approach toward solving this problem involves face detection, followed by key-point identification, then feature generation, and then, finally, classification. An ensemble of features consisting of hierarchical Gaussianization, scale-invariant feature transform, and some coarse motion features have been used. In the classification stage, we used support vector machines. The classification task has been divided into person-specific and person-independent emotion recognitions using face recognition with either manual labels or automatic algorithms. We achieve 100% performance for the person-specific one, 66% performance for the person-independent one, and 80% performance for overall results, in terms of classification rate, for emotion recognition with manual identification of subjects. </p>","PeriodicalId":55006,"journal":{"name":"IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics","volume":" ","pages":"1017-26"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TSMCB.2012.2194701","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSMCB.2012.2194701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/5/3 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

This paper details the authors' efforts to push the baseline of emotion recognition performance on the Geneva Multimodal Emotion Portrayals (GEMEP) Facial Expression Recognition and Analysis database. Both subject-dependent and subject-independent emotion recognition scenarios are addressed in this paper. The approach toward solving this problem involves face detection, followed by key-point identification, then feature generation, and then, finally, classification. An ensemble of features consisting of hierarchical Gaussianization, scale-invariant feature transform, and some coarse motion features have been used. In the classification stage, we used support vector machines. The classification task has been divided into person-specific and person-independent emotion recognitions using face recognition with either manual labels or automatic algorithms. We achieve 100% performance for the person-specific one, 66% performance for the person-independent one, and 80% performance for overall results, in terms of classification rate, for emotion recognition with manual identification of subjects.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从特征集合中识别情感。
本文详细介绍了作者在日内瓦多模态情绪描述(GEMEP)面部表情识别和分析数据库上推动情绪识别性能基线的努力。本文讨论了主体依赖和主体独立的情感识别场景。解决这个问题的方法包括人脸检测,然后是关键点识别,然后是特征生成,最后是分类。采用了由层次高斯化、尺度不变特征变换和一些粗运动特征组成的特征集合。在分类阶段,我们使用了支持向量机。分类任务分为个人情感识别和个人独立情感识别,使用手动标签或自动算法进行人脸识别。我们在个人特定的情况下达到了100%的表现,在个人独立的情况下达到了66%的表现,在分类率方面,在人工识别对象的情感识别方面,总体结果达到了80%的表现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
6.0 months
期刊最新文献
Alternative Tests for the Selection of Model Variables Operations Research Optimization of neural networks using variable structure systems. Gait recognition across various walking speeds using higher order shape configuration based on a differential composition model. Integrating instance selection, instance weighting, and feature weighting for nearest neighbor classifiers by coevolutionary algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1