C. elegans feeding.

Leon Avery, Young-Jai You
{"title":"C. elegans feeding.","authors":"Leon Avery,&nbsp;Young-Jai You","doi":"10.1895/wormbook.1.150.1","DOIUrl":null,"url":null,"abstract":"<p><p>C. elegans feeding depends on the action of the pharynx, a neuromuscular pump that joins the mouth to the intestine. The pharyngeal muscle captures food-bacteria-and transports it back to the intestine. It accomplishes this through a combination of two motions, pumping and isthmus peristalsis. Pumping, the most visible and best understood of the two, is a cycle of contraction and relaxation that sucks in liquid from the surrounding environment along with suspended particles, then expels the liquid, trapping the particles. Pharyngeal muscle is capable of pumping without nervous system input, but during normal rapid feeding its timing is controlled by two pharyngeal motor neuron types. Isthmus peristalsis, a posterior moving wave of contraction of the muscle of the posterior isthmus, depends on a third motor neuron type. Feeding motions are regulated by the presence and quality of food in the worm's environment. Some types of bacteria are better at supporting growth than others. Given a choice, worms are capable of identifying and seeking out higher-quality food. Food availability and quality also affect behavior in other ways. For instance, given all the high-quality food they can eat, worms eventually become satiated, stop eating and moving, and become quiescent.</p>","PeriodicalId":75344,"journal":{"name":"WormBook : the online review of C. elegans biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3590810/pdf/","citationCount":"146","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"WormBook : the online review of C. elegans biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1895/wormbook.1.150.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 146

Abstract

C. elegans feeding depends on the action of the pharynx, a neuromuscular pump that joins the mouth to the intestine. The pharyngeal muscle captures food-bacteria-and transports it back to the intestine. It accomplishes this through a combination of two motions, pumping and isthmus peristalsis. Pumping, the most visible and best understood of the two, is a cycle of contraction and relaxation that sucks in liquid from the surrounding environment along with suspended particles, then expels the liquid, trapping the particles. Pharyngeal muscle is capable of pumping without nervous system input, but during normal rapid feeding its timing is controlled by two pharyngeal motor neuron types. Isthmus peristalsis, a posterior moving wave of contraction of the muscle of the posterior isthmus, depends on a third motor neuron type. Feeding motions are regulated by the presence and quality of food in the worm's environment. Some types of bacteria are better at supporting growth than others. Given a choice, worms are capable of identifying and seeking out higher-quality food. Food availability and quality also affect behavior in other ways. For instance, given all the high-quality food they can eat, worms eventually become satiated, stop eating and moving, and become quiescent.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
秀丽隐杆线虫进食。
秀丽隐杆线虫的进食依赖于咽的活动,咽是连接口腔和肠道的神经肌肉泵。咽肌捕获食物中的细菌,并将其运送回肠道。它通过两种运动的结合来实现这一目标,泵送和峡部蠕动。泵送是两者中最明显和最容易理解的一种,它是一种收缩和松弛的循环,它从周围环境中吸收液体和悬浮粒子,然后将液体排出,捕获粒子。咽肌能够在没有神经系统输入的情况下泵送,但在正常快速进食时,其时间由两种咽运动神经元控制。峡部蠕动是后峡部肌肉收缩的后运动波,依赖于第三种运动神经元类型。蛔虫的进食动作是由环境中食物的存在和质量来调节的。有些类型的细菌比其他类型的细菌更能支持生长。如果有选择,蠕虫能够识别并寻找更高质量的食物。食物的供应和质量也会以其他方式影响人们的行为。例如,给它们所有可以吃的高质量食物,蠕虫最终会感到饱,停止进食和移动,并变得安静。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Neurotransmitter signaling through heterotrimeric G proteins: insights from studies in C. elegans. Small GTPases. Signaling in the innate immune response. Working with dauer larvae. Caenorhabditis nomenclature.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1