Synthetic nucleotides as probes of DNA polymerase specificity.

IF 1.3 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Nucleic Acids Pub Date : 2012-01-01 Epub Date: 2012-06-07 DOI:10.1155/2012/530963
Jason M Walsh, Penny J Beuning
{"title":"Synthetic nucleotides as probes of DNA polymerase specificity.","authors":"Jason M Walsh, Penny J Beuning","doi":"10.1155/2012/530963","DOIUrl":null,"url":null,"abstract":"<p><p>The genetic code is continuously expanding with new nucleobases designed to suit specific research needs. These synthetic nucleotides are used to study DNA polymerase dynamics and specificity and may even inhibit DNA polymerase activity. The availability of an increasing chemical diversity of nucleotides allows questions of utilization by different DNA polymerases to be addressed. Much of the work in this area deals with the A family DNA polymerases, for example, Escherichia coli DNA polymerase I, which are DNA polymerases involved in replication and whose fidelity is relatively high, but more recent work includes other families of polymerases, including the Y family, whose members are known to be error prone. This paper focuses on the ability of DNA polymerases to utilize nonnatural nucleotides in DNA templates or as the incoming nucleoside triphosphates. Beyond the utility of nonnatural nucleotides as probes of DNA polymerase specificity, such entities can also provide insight into the functions of DNA polymerases when encountering DNA that is damaged by natural agents. Thus, synthetic nucleotides provide insight into how polymerases deal with nonnatural nucleotides as well as into the mutagenic potential of nonnatural nucleotides.</p>","PeriodicalId":16575,"journal":{"name":"Journal of Nucleic Acids","volume":"2012 ","pages":"530963"},"PeriodicalIF":1.3000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3377560/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nucleic Acids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2012/530963","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/6/7 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The genetic code is continuously expanding with new nucleobases designed to suit specific research needs. These synthetic nucleotides are used to study DNA polymerase dynamics and specificity and may even inhibit DNA polymerase activity. The availability of an increasing chemical diversity of nucleotides allows questions of utilization by different DNA polymerases to be addressed. Much of the work in this area deals with the A family DNA polymerases, for example, Escherichia coli DNA polymerase I, which are DNA polymerases involved in replication and whose fidelity is relatively high, but more recent work includes other families of polymerases, including the Y family, whose members are known to be error prone. This paper focuses on the ability of DNA polymerases to utilize nonnatural nucleotides in DNA templates or as the incoming nucleoside triphosphates. Beyond the utility of nonnatural nucleotides as probes of DNA polymerase specificity, such entities can also provide insight into the functions of DNA polymerases when encountering DNA that is damaged by natural agents. Thus, synthetic nucleotides provide insight into how polymerases deal with nonnatural nucleotides as well as into the mutagenic potential of nonnatural nucleotides.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
合成核苷酸作为 DNA 聚合酶特异性的探针。
遗传密码在不断扩展,新的核碱基被设计出来以满足特定的研究需要。这些合成核苷酸用于研究 DNA 聚合酶的动态和特异性,甚至可能抑制 DNA 聚合酶的活性。核苷酸的化学多样性不断增加,使不同 DNA 聚合酶的利用问题得以解决。这一领域的大部分工作涉及 A 族 DNA 聚合酶,例如大肠杆菌 DNA 聚合酶 I,它们是参与复制的 DNA 聚合酶,其保真度相对较高,但最近的工作包括其他家族的聚合酶,包括 Y 族,已知其成员容易出错。本文重点研究 DNA 聚合酶利用 DNA 模板中的非天然核苷酸或作为输入核苷三磷酸的能力。除了将非天然核苷酸用作 DNA 聚合酶特异性的探针外,这些实体还能让人们深入了解 DNA 聚合酶在遇到被自然物质破坏的 DNA 时的功能。因此,合成核苷酸可以让人们了解聚合酶如何处理非天然核苷酸以及非天然核苷酸的诱变潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Nucleic Acids
Journal of Nucleic Acids BIOCHEMISTRY & MOLECULAR BIOLOGY-
CiteScore
3.10
自引率
21.70%
发文量
5
审稿时长
12 weeks
期刊最新文献
Dual Detection of Hepatitis B and C Viruses Using CRISPR-Cas Systems and Lateral Flow Assay. Synthesis and Evaluation of MGB Polyamide-Oligonucleotide Conjugates as Gene Expression Control Compounds. Update on the Development of Toehold Switch-Based Approach for Molecular Diagnostic Tests of COVID-19 Exposure to a Pathological Condition May Be Required for the Cells to Secrete Exosomes Containing mtDNA Aberration Perturbing the Normal Level of SIDT1 Suppresses the Naked ASO Effect.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1