Ruminant metabolic systems biology: reconstruction and integration of transcriptome dynamics underlying functional responses of tissues to nutrition and physiological state.

Gene regulation and systems biology Pub Date : 2012-01-01 Epub Date: 2012-06-25 DOI:10.4137/GRSB.S9852
Massimo Bionaz, Juan J Loor
{"title":"Ruminant metabolic systems biology: reconstruction and integration of transcriptome dynamics underlying functional responses of tissues to nutrition and physiological state.","authors":"Massimo Bionaz,&nbsp;Juan J Loor","doi":"10.4137/GRSB.S9852","DOIUrl":null,"url":null,"abstract":"<p><p>High-throughput 'omics' data analysis via bioinformatics is one key component of the systems biology approach. The systems approach is particularly well-suited for the study of the interactions between nutrition and physiological state with tissue metabolism and functions during key life stages of organisms such as the transition from pregnancy to lactation in mammals, ie, the peripartal period. In modern dairy cows with an unprecedented genetic potential for milk synthesis, the nature of the physiologic and metabolic adaptations during the peripartal period is multifaceted and involves key tissues such as liver, adipose, and mammary. In order to understand such adaptation, we have reviewed several works performed in our and other labs. In addition, we have used a novel bioinformatics approach, Dynamic Impact Approach (DIA), in combination with partly previously published data to help interpret longitudinal biological adaptations of bovine liver, adipose, and mammary tissue to lactation using transcriptomics datasets. Use of DIA with transcriptomic data from those tissues during normal physiological adaptations and in animals fed different levels of energy prepartum allowed visualization and integration of most-impacted metabolic pathways around the time of parturition. The DIA is a suitable tool for applying the integrative systems biology approach. The ultimate goal is to visualize the complexity of the systems at study and uncover key molecular players involved in the tissue's adaptations to physiological state or nutrition.</p>","PeriodicalId":73138,"journal":{"name":"Gene regulation and systems biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4137/GRSB.S9852","citationCount":"47","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gene regulation and systems biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4137/GRSB.S9852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/6/25 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47

Abstract

High-throughput 'omics' data analysis via bioinformatics is one key component of the systems biology approach. The systems approach is particularly well-suited for the study of the interactions between nutrition and physiological state with tissue metabolism and functions during key life stages of organisms such as the transition from pregnancy to lactation in mammals, ie, the peripartal period. In modern dairy cows with an unprecedented genetic potential for milk synthesis, the nature of the physiologic and metabolic adaptations during the peripartal period is multifaceted and involves key tissues such as liver, adipose, and mammary. In order to understand such adaptation, we have reviewed several works performed in our and other labs. In addition, we have used a novel bioinformatics approach, Dynamic Impact Approach (DIA), in combination with partly previously published data to help interpret longitudinal biological adaptations of bovine liver, adipose, and mammary tissue to lactation using transcriptomics datasets. Use of DIA with transcriptomic data from those tissues during normal physiological adaptations and in animals fed different levels of energy prepartum allowed visualization and integration of most-impacted metabolic pathways around the time of parturition. The DIA is a suitable tool for applying the integrative systems biology approach. The ultimate goal is to visualize the complexity of the systems at study and uncover key molecular players involved in the tissue's adaptations to physiological state or nutrition.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
反刍动物代谢系统生物学:组织对营养和生理状态的功能反应的转录组动力学的重建和整合。
通过生物信息学进行的高通量“组学”数据分析是系统生物学方法的一个关键组成部分。系统方法特别适合于研究生物关键生命阶段(如哺乳动物从怀孕到哺乳的过渡,即围生期)营养和生理状态与组织代谢和功能之间的相互作用。现代奶牛具有前所未有的牛奶合成遗传潜力,围产期生理和代谢适应的性质是多方面的,涉及肝脏、脂肪和乳腺等关键组织。为了理解这种适应性,我们回顾了在我们和其他实验室进行的几项工作。此外,我们使用了一种新的生物信息学方法,动态影响方法(DIA),结合部分先前发表的数据,利用转录组学数据集帮助解释牛肝脏、脂肪和乳腺组织对哺乳的纵向生物学适应。将DIA与正常生理适应期间和饲喂不同水平能量准备的动物的这些组织的转录组学数据一起使用,可以可视化和整合分娩期间受影响最大的代谢途径。DIA是应用综合系统生物学方法的合适工具。最终目标是可视化所研究系统的复杂性,并揭示参与组织适应生理状态或营养的关键分子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pathway-Based Analysis of the Liver Response to Intravenous Methylprednisolone Administration in Rats: Acute Versus Chronic Dosing. Temporal and Spatial Differential Expression of Glutamate Receptor Genes in the Brain of Down Syndrome Introductory Chapter: Gene Regulation, an RNA Network-Dependent Architecture Model-based Evaluation of Gene Expression Changes in Response to Leishmania Infection. Gene Activation by the Cytokine-Driven Transcription Factor STAT1
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1