P300 brain computer interface: current challenges and emerging trends.

Frontiers in neuroengineering Pub Date : 2012-07-17 eCollection Date: 2012-01-01 DOI:10.3389/fneng.2012.00014
Reza Fazel-Rezai, Brendan Z Allison, Christoph Guger, Eric W Sellers, Sonja C Kleih, Andrea Kübler
{"title":"P300 brain computer interface: current challenges and emerging trends.","authors":"Reza Fazel-Rezai,&nbsp;Brendan Z Allison,&nbsp;Christoph Guger,&nbsp;Eric W Sellers,&nbsp;Sonja C Kleih,&nbsp;Andrea Kübler","doi":"10.3389/fneng.2012.00014","DOIUrl":null,"url":null,"abstract":"<p><p>A brain-computer interface (BCI) enables communication without movement based on brain signals measured with electroencephalography (EEG). BCIs usually rely on one of three types of signals: the P300 and other components of the event-related potential (ERP), steady state visual evoked potential (SSVEP), or event related desynchronization (ERD). Although P300 BCIs were introduced over twenty years ago, the past few years have seen a strong increase in P300 BCI research. This closed-loop BCI approach relies on the P300 and other components of the ERP, based on an oddball paradigm presented to the subject. In this paper, we overview the current status of P300 BCI technology, and then discuss new directions: paradigms for eliciting P300s; signal processing methods; applications; and hybrid BCIs. We conclude that P300 BCIs are quite promising, as several emerging directions have not yet been fully explored and could lead to improvements in bit rate, reliability, usability, and flexibility.</p>","PeriodicalId":73093,"journal":{"name":"Frontiers in neuroengineering","volume":"5 ","pages":"14"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3389/fneng.2012.00014","citationCount":"320","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in neuroengineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fneng.2012.00014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 320

Abstract

A brain-computer interface (BCI) enables communication without movement based on brain signals measured with electroencephalography (EEG). BCIs usually rely on one of three types of signals: the P300 and other components of the event-related potential (ERP), steady state visual evoked potential (SSVEP), or event related desynchronization (ERD). Although P300 BCIs were introduced over twenty years ago, the past few years have seen a strong increase in P300 BCI research. This closed-loop BCI approach relies on the P300 and other components of the ERP, based on an oddball paradigm presented to the subject. In this paper, we overview the current status of P300 BCI technology, and then discuss new directions: paradigms for eliciting P300s; signal processing methods; applications; and hybrid BCIs. We conclude that P300 BCIs are quite promising, as several emerging directions have not yet been fully explored and could lead to improvements in bit rate, reliability, usability, and flexibility.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
P300脑机接口:当前的挑战和新兴趋势。
脑机接口(BCI)能够基于脑电图(EEG)测量的大脑信号在没有运动的情况下进行通信。脑机接口通常依赖于三种类型的信号之一:P300和事件相关电位(ERP)、稳态视觉诱发电位(SSVEP)或事件相关去同步(ERD)的其他成分。尽管P300脑机接口是在20多年前引入的,但在过去几年中,P300脑电接口的研究有了强劲的增长。这种闭环脑机接口方法依赖于P300和ERP的其他组成部分,基于呈现给受试者的古怪范式。在本文中,我们概述了P300脑机接口技术的现状,然后讨论了新的方向:诱发P300的范式;信号处理方法;应用程序;以及混合脑机接口。我们得出的结论是,P300脑机接口非常有前景,因为几个新兴的方向尚未得到充分探索,可能会提高比特率、可靠性、可用性和灵活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
In vivo comparison of the charge densities required to evoke motor responses using novel annular penetrating microelectrodes. SET: a pupil detection method using sinusoidal approximation. The chronic challenge-new vistas on long-term multisite contacts to the central nervous system. High frequency switched-mode stimulation can evoke post synaptic responses in cerebellar principal neurons. NeuroPG: open source software for optical pattern generation and data acquisition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1