MicroRNAs in insulin resistance and obesity.

Experimental Diabetes Research Pub Date : 2012-01-01 Epub Date: 2012-07-18 DOI:10.1155/2012/484696
Michael D Williams, Geraldine M Mitchell
{"title":"MicroRNAs in insulin resistance and obesity.","authors":"Michael D Williams,&nbsp;Geraldine M Mitchell","doi":"10.1155/2012/484696","DOIUrl":null,"url":null,"abstract":"<p><p>MicroRNAs (miRNAs) are a class of short, single-stranded non-protein coding gene products which can regulate the gene expression through post-transcriptional inhibition of messenger RNA (mRNA) translation. They are known to be involved in many essential biological processes including development, insulin secretion, and adipocyte differentiation. miRNAs are involved in complex metabolic processes, such as energy and lipid metabolism, which have been studied in the context of diabetes and obesity. Obesity, hyperlipidemia (elevated levels of blood lipids), and insulin resistance are strongly associated with the onset of type 2 diabetes. These conditions are also associated with aberrant expression of multiple essential miRNAs in pancreatic islets of Langerhans and peripheral tissues, including adipose tissue. A thorough understanding of the physiological role these miRNAs play in these tissues, and changes to their expression under pathological conditions, will allow researchers to develop new therapeutics with the potential to correct the aberrant expression of miRNAs in type 2 diabetes and obesity.</p>","PeriodicalId":12109,"journal":{"name":"Experimental Diabetes Research","volume":"2012 ","pages":"484696"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2012/484696","citationCount":"134","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Diabetes Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2012/484696","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/7/18 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 134

Abstract

MicroRNAs (miRNAs) are a class of short, single-stranded non-protein coding gene products which can regulate the gene expression through post-transcriptional inhibition of messenger RNA (mRNA) translation. They are known to be involved in many essential biological processes including development, insulin secretion, and adipocyte differentiation. miRNAs are involved in complex metabolic processes, such as energy and lipid metabolism, which have been studied in the context of diabetes and obesity. Obesity, hyperlipidemia (elevated levels of blood lipids), and insulin resistance are strongly associated with the onset of type 2 diabetes. These conditions are also associated with aberrant expression of multiple essential miRNAs in pancreatic islets of Langerhans and peripheral tissues, including adipose tissue. A thorough understanding of the physiological role these miRNAs play in these tissues, and changes to their expression under pathological conditions, will allow researchers to develop new therapeutics with the potential to correct the aberrant expression of miRNAs in type 2 diabetes and obesity.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
胰岛素抵抗和肥胖中的microrna。
MicroRNAs (miRNAs)是一类短链、单链的非蛋白质编码基因产物,可以通过转录后抑制信使RNA (mRNA)的翻译来调节基因表达。它们参与了许多重要的生物过程,包括发育、胰岛素分泌和脂肪细胞分化。mirna参与复杂的代谢过程,如能量和脂质代谢,这在糖尿病和肥胖的背景下进行了研究。肥胖、高脂血症(血脂水平升高)和胰岛素抵抗与2型糖尿病的发病密切相关。这些疾病也与朗格汉斯胰岛和周围组织(包括脂肪组织)中多种必需mirna的异常表达有关。深入了解这些mirna在这些组织中的生理作用,以及病理条件下它们表达的变化,将使研究人员能够开发出新的治疗方法,有可能纠正mirna在2型糖尿病和肥胖症中的异常表达。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Experimental Diabetes Research
Experimental Diabetes Research 医学-内分泌学与代谢
自引率
0.00%
发文量
0
审稿时长
3-8 weeks
期刊最新文献
Nontraditional Therapy of Diabetes and Its Complications In Vitro Investigation and Evaluation of Novel Drug Based on Polyherbal Extract against Type 2 Diabetes Prevalence and Risk Factors Associated with Type 2 Diabetes in Elderly Patients Aged 45-80 Years at Kanungu District Erratum to “Circulating Levels of MicroRNA from Children with Newly Diagnosed Type 1 Diabetes and Healthy Controls: Evidence That miR-25 Associates to Residual Beta-Cell Function and Glycaemic Control during Disease Progression” A PEDF-derived peptide inhibits retinal neovascularization and blocks mobilization of bone marrow-derived endothelial progenitor cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1