Introductory editorial.

Biomedical informatics insights Pub Date : 2012-01-01 Epub Date: 2012-01-30 DOI:10.4137/BII.S9297
John P Pestian
{"title":"Introductory editorial.","authors":"John P Pestian","doi":"10.4137/BII.S9297","DOIUrl":null,"url":null,"abstract":"In this special issue of Biomedical Informatics Insights we present the results of a shared task dedicated to finding emotions in suicide notes with machine learning tools. Shared tasks are not new, but conducting this type of sentiment analysis with this amount of data is. A total of 1278 notes that were written by people just prior to dying by suicide were annotated by 160 vested volunteers. Each note was read by three different volunteers and then annotated based on an emotional schema that included: abuse, anger, blame, fear, guilt, hopelessness, sorrow, forgiveness, happiness, peacefulness, hopefulness, love, pride, thankfulness, instructions, and information. These annotated notes formed the corpus required by the machine learning methods. Twenty four teams agreed to analyze these data and then submit a manuscript for review. The systems with the highest precision and recall were submitted by: Open University in Milton Keynes UK, Microsoft Research Asia in Beijing, P.R. China and Mayo Clinic in Rochester NY USA. Each of these groups received a travel stipend provided by Diamond Healthcare, Richmond VA, USA. Each manuscript was blindly reviewed by three reviewers whose results formed the decision to publish. This is somewhat of a different review process for Biomedical Informatics Insight because we used the participants to blindly review each others manuscripts rather than calling upon the pool of reviewers. The best paper was A Hybrid Model for Automatic Emotion Recognition in Suicide Notes by Hui Yang, Alistair Willis, Anne de Roeck and Bashar Nuseibeh of Open University. The full articles along with all the articles can be found in Biomedical Informatics Insights. A shared task of this magnitude does not happen by chance. Rather, it is the tenacity of the steering committee, the vested volunteers, and the staff who made this important activity occur. From it we have learned a great deal about sentiment analysis and the limitations of the data. I invite you to read the articles about this shared task and I encourage you to learn as much as we have.","PeriodicalId":88397,"journal":{"name":"Biomedical informatics insights","volume":"5 Suppl. 1","pages":"1 - 1"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4137/BII.S9297","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical informatics insights","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4137/BII.S9297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/1/30 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In this special issue of Biomedical Informatics Insights we present the results of a shared task dedicated to finding emotions in suicide notes with machine learning tools. Shared tasks are not new, but conducting this type of sentiment analysis with this amount of data is. A total of 1278 notes that were written by people just prior to dying by suicide were annotated by 160 vested volunteers. Each note was read by three different volunteers and then annotated based on an emotional schema that included: abuse, anger, blame, fear, guilt, hopelessness, sorrow, forgiveness, happiness, peacefulness, hopefulness, love, pride, thankfulness, instructions, and information. These annotated notes formed the corpus required by the machine learning methods. Twenty four teams agreed to analyze these data and then submit a manuscript for review. The systems with the highest precision and recall were submitted by: Open University in Milton Keynes UK, Microsoft Research Asia in Beijing, P.R. China and Mayo Clinic in Rochester NY USA. Each of these groups received a travel stipend provided by Diamond Healthcare, Richmond VA, USA. Each manuscript was blindly reviewed by three reviewers whose results formed the decision to publish. This is somewhat of a different review process for Biomedical Informatics Insight because we used the participants to blindly review each others manuscripts rather than calling upon the pool of reviewers. The best paper was A Hybrid Model for Automatic Emotion Recognition in Suicide Notes by Hui Yang, Alistair Willis, Anne de Roeck and Bashar Nuseibeh of Open University. The full articles along with all the articles can be found in Biomedical Informatics Insights. A shared task of this magnitude does not happen by chance. Rather, it is the tenacity of the steering committee, the vested volunteers, and the staff who made this important activity occur. From it we have learned a great deal about sentiment analysis and the limitations of the data. I invite you to read the articles about this shared task and I encourage you to learn as much as we have.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
介绍性的社论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Data-Driven Approach to Predicting Septic Shock in the Intensive Care Unit A Genome Model to Explain Major Features of Neurodevelopmental Disorders in Newborns. Mathematical Model for Computer-Assisted Modification of Medication Dosing Rules. Applying Supervised Machine Learning to Identify Which Patient Characteristics Identify the Highest Rates of Mortality Post-Interhospital Transfer. Coalitional Game Theory Facilitates Identification of Non-Coding Variants Associated With Autism.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1