Emotion Detection in Suicide Notes using Maximum Entropy Classification.

Biomedical informatics insights Pub Date : 2012-01-01 Epub Date: 2012-01-30 DOI:10.4137/BII.S8972
Richard Wicentowski, Matthew R Sydes
{"title":"Emotion Detection in Suicide Notes using Maximum Entropy Classification.","authors":"Richard Wicentowski,&nbsp;Matthew R Sydes","doi":"10.4137/BII.S8972","DOIUrl":null,"url":null,"abstract":"<p><p>An ensemble of supervised maximum entropy classifiers can accurately detect and identify sentiments expressed in suicide notes. Using lexical and syntactic features extracted from a training set of externally annotated suicide notes, we trained separate classifiers for each of fifteen pre-specified emotions. This formed part of the 2011 i2b2 NLP Shared Task, Track 2. The precision and recall of these classifiers related strongly with the number of occurrences of each emotion in the training data. Evaluating on previously unseen test data, our best system achieved an F(1) score of 0.534.</p>","PeriodicalId":88397,"journal":{"name":"Biomedical informatics insights","volume":"5 Suppl. 1","pages":"51-60"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4137/BII.S8972","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical informatics insights","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4137/BII.S8972","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/1/30 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

An ensemble of supervised maximum entropy classifiers can accurately detect and identify sentiments expressed in suicide notes. Using lexical and syntactic features extracted from a training set of externally annotated suicide notes, we trained separate classifiers for each of fifteen pre-specified emotions. This formed part of the 2011 i2b2 NLP Shared Task, Track 2. The precision and recall of these classifiers related strongly with the number of occurrences of each emotion in the training data. Evaluating on previously unseen test data, our best system achieved an F(1) score of 0.534.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于最大熵分类的遗书情感检测。
有监督最大熵分类器的集合可以准确地检测和识别遗书中表达的情绪。使用从外部注释的自杀遗书训练集中提取的词汇和句法特征,我们为15种预先指定的情绪训练了单独的分类器。这是2011 i2b2 NLP共享任务(Track 2)的一部分。这些分类器的准确率和召回率与训练数据中每种情绪的出现次数密切相关。对以前未见过的测试数据进行评估,我们最好的系统获得了0.534的F(1)分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Data-Driven Approach to Predicting Septic Shock in the Intensive Care Unit A Genome Model to Explain Major Features of Neurodevelopmental Disorders in Newborns. Mathematical Model for Computer-Assisted Modification of Medication Dosing Rules. Applying Supervised Machine Learning to Identify Which Patient Characteristics Identify the Highest Rates of Mortality Post-Interhospital Transfer. Coalitional Game Theory Facilitates Identification of Non-Coding Variants Associated With Autism.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1