Using ensemble models to classify the sentiment expressed in suicide notes.

Biomedical informatics insights Pub Date : 2012-01-01 Epub Date: 2012-01-30 DOI:10.4137/BII.S8931
James A McCart, Dezon K Finch, Jay Jarman, Edward Hickling, Jason D Lind, Matthew R Richardson, Donald J Berndt, Stephen L Luther
{"title":"Using ensemble models to classify the sentiment expressed in suicide notes.","authors":"James A McCart,&nbsp;Dezon K Finch,&nbsp;Jay Jarman,&nbsp;Edward Hickling,&nbsp;Jason D Lind,&nbsp;Matthew R Richardson,&nbsp;Donald J Berndt,&nbsp;Stephen L Luther","doi":"10.4137/BII.S8931","DOIUrl":null,"url":null,"abstract":"<p><p>In 2007, suicide was the tenth leading cause of death in the U.S. Given the significance of this problem, suicide was the focus of the 2011 Informatics for Integrating Biology and the Bedside (i2b2) Natural Language Processing (NLP) shared task competition (track two). Specifically, the challenge concentrated on sentiment analysis, predicting the presence or absence of 15 emotions (labels) simultaneously in a collection of suicide notes spanning over 70 years. Our team explored multiple approaches combining regular expression-based rules, statistical text mining (STM), and an approach that applies weights to text while accounting for multiple labels. Our best submission used an ensemble of both rules and STM models to achieve a micro-averaged F(1) score of 0.5023, slightly above the mean from the 26 teams that competed (0.4875).</p>","PeriodicalId":88397,"journal":{"name":"Biomedical informatics insights","volume":"5 Suppl. 1","pages":"77-85"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4137/BII.S8931","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical informatics insights","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4137/BII.S8931","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/1/30 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

In 2007, suicide was the tenth leading cause of death in the U.S. Given the significance of this problem, suicide was the focus of the 2011 Informatics for Integrating Biology and the Bedside (i2b2) Natural Language Processing (NLP) shared task competition (track two). Specifically, the challenge concentrated on sentiment analysis, predicting the presence or absence of 15 emotions (labels) simultaneously in a collection of suicide notes spanning over 70 years. Our team explored multiple approaches combining regular expression-based rules, statistical text mining (STM), and an approach that applies weights to text while accounting for multiple labels. Our best submission used an ensemble of both rules and STM models to achieve a micro-averaged F(1) score of 0.5023, slightly above the mean from the 26 teams that competed (0.4875).

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用集成模型对遗书中表达的情感进行分类。
2007年,自杀是美国第十大死亡原因。鉴于这一问题的重要性,自杀成为2011年整合生物学和床边信息学(i2b2)自然语言处理(NLP)共享任务竞赛的重点。具体来说,挑战集中在情绪分析上,预测在70多年的遗书中同时存在或不存在15种情绪(标签)。我们的团队探索了多种方法,包括基于正则表达式的规则、统计文本挖掘(STM)和一种在考虑多个标签的情况下对文本应用权重的方法。我们最好的提交使用了规则和STM模型的集合,获得了0.5023的微平均F(1)分数,略高于26支参赛队伍的平均值(0.4875)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Data-Driven Approach to Predicting Septic Shock in the Intensive Care Unit A Genome Model to Explain Major Features of Neurodevelopmental Disorders in Newborns. Mathematical Model for Computer-Assisted Modification of Medication Dosing Rules. Applying Supervised Machine Learning to Identify Which Patient Characteristics Identify the Highest Rates of Mortality Post-Interhospital Transfer. Coalitional Game Theory Facilitates Identification of Non-Coding Variants Associated With Autism.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1