Statistical and similarity methods for classifying emotion in suicide notes.

Biomedical informatics insights Pub Date : 2012-01-01 Epub Date: 2012-01-30 DOI:10.4137/BII.S8958
Kirk Roberts, Sanda M Harabagiu
{"title":"Statistical and similarity methods for classifying emotion in suicide notes.","authors":"Kirk Roberts,&nbsp;Sanda M Harabagiu","doi":"10.4137/BII.S8958","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper we report on the approaches that we developed for the 2011 i2b2 Shared Task on Sentiment Analysis of Suicide Notes. We have cast the problem of detecting emotions in suicide notes as a supervised multi-label classification problem. Our classifiers use a variety of features based on (a) lexical indicators, (b) topic scores, and (c) similarity measures. Our best submission has a precision of 0.551, a recall of 0.485, and a F-measure of 0.516.</p>","PeriodicalId":88397,"journal":{"name":"Biomedical informatics insights","volume":"5 Suppl. 1","pages":"195-204"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4137/BII.S8958","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical informatics insights","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4137/BII.S8958","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/1/30 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

In this paper we report on the approaches that we developed for the 2011 i2b2 Shared Task on Sentiment Analysis of Suicide Notes. We have cast the problem of detecting emotions in suicide notes as a supervised multi-label classification problem. Our classifiers use a variety of features based on (a) lexical indicators, (b) topic scores, and (c) similarity measures. Our best submission has a precision of 0.551, a recall of 0.485, and a F-measure of 0.516.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
遗书情绪分类的统计与相似方法。
在本文中,我们报告了我们为2011年i2b2自杀笔记情感分析共享任务开发的方法。我们将自杀遗书中的情绪检测问题作为一个有监督的多标签分类问题。我们的分类器使用基于(a)词法指标、(b)主题分数和(c)相似性度量的各种特征。我们最好的提交精度为0.551,召回率为0.485,f值为0.516。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Data-Driven Approach to Predicting Septic Shock in the Intensive Care Unit A Genome Model to Explain Major Features of Neurodevelopmental Disorders in Newborns. Mathematical Model for Computer-Assisted Modification of Medication Dosing Rules. Applying Supervised Machine Learning to Identify Which Patient Characteristics Identify the Highest Rates of Mortality Post-Interhospital Transfer. Coalitional Game Theory Facilitates Identification of Non-Coding Variants Associated With Autism.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1