Interpreting interactions of ordinal or continuous variables in moderated regression using the zero slope comparison: tutorial, new extensions, and cancer symptom applications.
{"title":"Interpreting interactions of ordinal or continuous variables in moderated regression using the zero slope comparison: tutorial, new extensions, and cancer symptom applications.","authors":"Richard B Francoeur","doi":"10.1504/IJSSS.2011.038937","DOIUrl":null,"url":null,"abstract":"<p><p>Moderated multiple regression (MMR) can model behaviours as multiple interdependencies within a system. When MMR reveals a statistically significant interaction term composed of ordinal or continuous variables, a follow-up procedure is required to interpret its nature and strength across the primary predictor (x) range. A follow-up procedure should probe when interactions reveal magnifier (or aggravating) effects and/or buffering (or relieving) effects that qualify the x-y relationship, especially when interpreting multiple interactions, or a complex interaction involving curvilinearity or multiple co-moderator variables. After a tutorial on the zero slope comparison (ZSC), a rarely used, quick approach for interpreting linear interactions between two ordinal or continuous variables, I derive novel extensions to interpret curvilinear interactions between two variables and linear interactions among three variables. I apply these extensions to interpret how co-occurring cancer symptoms at different levels influence one another - based on their interaction - to predict feelings of sickness malaise.</p>","PeriodicalId":89681,"journal":{"name":"International journal of society systems science","volume":"3 1-2","pages":"137-158"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/IJSSS.2011.038937","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of society systems science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJSSS.2011.038937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Moderated multiple regression (MMR) can model behaviours as multiple interdependencies within a system. When MMR reveals a statistically significant interaction term composed of ordinal or continuous variables, a follow-up procedure is required to interpret its nature and strength across the primary predictor (x) range. A follow-up procedure should probe when interactions reveal magnifier (or aggravating) effects and/or buffering (or relieving) effects that qualify the x-y relationship, especially when interpreting multiple interactions, or a complex interaction involving curvilinearity or multiple co-moderator variables. After a tutorial on the zero slope comparison (ZSC), a rarely used, quick approach for interpreting linear interactions between two ordinal or continuous variables, I derive novel extensions to interpret curvilinear interactions between two variables and linear interactions among three variables. I apply these extensions to interpret how co-occurring cancer symptoms at different levels influence one another - based on their interaction - to predict feelings of sickness malaise.