ASGR1 and ASGR2, the Genes that Encode the Asialoglycoprotein Receptor (Ashwell Receptor), Are Expressed in Peripheral Blood Monocytes and Show Interindividual Differences in Transcript Profile.

Molecular biology international Pub Date : 2012-01-01 Epub Date: 2012-08-02 DOI:10.1155/2012/283974
Rebecca Louise Harris, Carmen Wilma van den Berg, Derrick John Bowen
{"title":"ASGR1 and ASGR2, the Genes that Encode the Asialoglycoprotein Receptor (Ashwell Receptor), Are Expressed in Peripheral Blood Monocytes and Show Interindividual Differences in Transcript Profile.","authors":"Rebecca Louise Harris,&nbsp;Carmen Wilma van den Berg,&nbsp;Derrick John Bowen","doi":"10.1155/2012/283974","DOIUrl":null,"url":null,"abstract":"<p><p>Background. The asialoglycoprotein receptor (ASGPR) is a hepatic receptor that mediates removal of potentially hazardous glycoconjugates from blood in health and disease. The receptor comprises two proteins, asialoglycoprotein receptor 1 and 2 (ASGR1 and ASGR2), encoded by the genes ASGR1 and ASGR2. Design and Methods. Using reverse transcription amplification (RT-PCR), expression of ASGR1 and ASGR2 was investigated in human peripheral blood monocytes. Results. Monocytes were found to express ASGR1 and ASGR2 transcripts. Correctly spliced transcript variants encoding different isoforms of ASGR1 and ASGR2 were present in monocytes. The profile of transcript variants from both ASGR1 and ASGR2 differed among individuals. Transcript expression levels were compared with the hepatocyte cell line HepG2 which produces high levels of ASGPR. Monocyte transcripts were 4 to 6 orders of magnitude less than in HepG2 but nonetheless readily detectable using standard RT-PCR. The monocyte cell line THP1 gave similar results to monocytes harvested from peripheral blood, indicating it may provide a suitable model system for studying ASGPR function in this cell type. Conclusions. Monocytes transcribe and correctly process transcripts encoding the constituent proteins of the ASGPR. Monocytes may therefore represent a mobile pool of the receptor, capable of reaching sites remote from the liver.</p>","PeriodicalId":74217,"journal":{"name":"Molecular biology international","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2012/283974","citationCount":"51","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular biology international","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2012/283974","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/8/2 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51

Abstract

Background. The asialoglycoprotein receptor (ASGPR) is a hepatic receptor that mediates removal of potentially hazardous glycoconjugates from blood in health and disease. The receptor comprises two proteins, asialoglycoprotein receptor 1 and 2 (ASGR1 and ASGR2), encoded by the genes ASGR1 and ASGR2. Design and Methods. Using reverse transcription amplification (RT-PCR), expression of ASGR1 and ASGR2 was investigated in human peripheral blood monocytes. Results. Monocytes were found to express ASGR1 and ASGR2 transcripts. Correctly spliced transcript variants encoding different isoforms of ASGR1 and ASGR2 were present in monocytes. The profile of transcript variants from both ASGR1 and ASGR2 differed among individuals. Transcript expression levels were compared with the hepatocyte cell line HepG2 which produces high levels of ASGPR. Monocyte transcripts were 4 to 6 orders of magnitude less than in HepG2 but nonetheless readily detectable using standard RT-PCR. The monocyte cell line THP1 gave similar results to monocytes harvested from peripheral blood, indicating it may provide a suitable model system for studying ASGPR function in this cell type. Conclusions. Monocytes transcribe and correctly process transcripts encoding the constituent proteins of the ASGPR. Monocytes may therefore represent a mobile pool of the receptor, capable of reaching sites remote from the liver.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
编码亚洲糖蛋白受体(Ashwell受体)的基因ASGR1和ASGR2在外周血单核细胞中表达,并在转录谱上表现出个体差异。
背景。asialal糖蛋白受体(ASGPR)是一种肝脏受体,在健康和疾病中介导血液中潜在危险糖缀合物的清除。该受体包括两种蛋白,asialal糖蛋白受体1和2 (ASGR1和ASGR2),由基因ASGR1和ASGR2编码。设计和方法。应用逆转录扩增技术(RT-PCR)研究了ASGR1和ASGR2在人外周血单核细胞中的表达。结果。单核细胞表达ASGR1和ASGR2转录物。在单核细胞中存在编码ASGR1和ASGR2不同亚型的正确剪接的转录物变体。来自ASGR1和ASGR2的转录本变体在个体之间存在差异。将转录物表达水平与产生高水平ASGPR的肝细胞系HepG2进行比较。单核细胞转录物比HepG2少4到6个数量级,但仍然很容易用标准RT-PCR检测到。单核细胞细胞系THP1与外周血单核细胞的结果相似,表明它可能为研究这种细胞类型的ASGPR功能提供了合适的模型系统。结论。单核细胞转录并正确处理编码ASGPR组成蛋白的转录本。因此,单核细胞可能代表一个受体的移动库,能够到达远离肝脏的部位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Role of B Cell Development Marker CD10 in Cancer Progression and Prognosis Drosophila Enhancer of Rudimentary Homolog, ERH, Is a Binding Partner of RPS3, RPL19, and DDIT4, Suggesting a Mechanism for the Nuclear Localization of ERH Cloning, Sequencing, and the Expression of the Elusive Sarcomeric TPM4α Isoform in Humans Molecular Characterization of Human Rotavirus from Children with Diarrhoeal Disease in Sokoto State, Nigeria Soluble Expression and Characterization of Biologically Active Bacillus anthracis Protective Antigen in Escherichia coli
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1