Biotechnological Potential of Agro Residues for Economical Production of Thermoalkali-Stable Pectinase by Bacillus pumilus dcsr1 by Solid-State Fermentation and Its Efficacy in the Treatment of Ramie Fibres.
{"title":"Biotechnological Potential of Agro Residues for Economical Production of Thermoalkali-Stable Pectinase by Bacillus pumilus dcsr1 by Solid-State Fermentation and Its Efficacy in the Treatment of Ramie Fibres.","authors":"Deepak Chand Sharma, T Satyanarayana","doi":"10.1155/2012/281384","DOIUrl":null,"url":null,"abstract":"<p><p>The production of a thermostable and highly alkaline pectinase by Bacillus pumilus dcsr1 was optimized in solid-state fermentation (SSF) and the impact of various treatments (chemical, enzymatic, and in combination) on the quality of ramie fibres was investigated. Maximum enzyme titer (348.0 ± 11.8 Ug(-1) DBB) in SSF was attained, when a mixture of agro-residues (sesame oilseed cake, wheat bran, and citrus pectin, 1 : 1 : 0.01) was moistened with mineral salt solution (a(w) 0.92, pH 9.0) at a substrate-to-moistening agent ratio of 1 : 2.5 and inoculated with 25% of 24 h old inoculum, in 144 h at 40°C. Parametric optimization in SSF resulted in 1.7-fold enhancement in the enzyme production as compared to that recorded in unoptimized conditions. A 14.2-fold higher enzyme production was attained in SSF as compared to that in submerged fermentation (SmF). The treatment with the enzyme significantly improved tensile strength and Young's modulus, reduction in brittleness, redness and yellowness, and increase in the strength and brightness of ramie fibres.</p>","PeriodicalId":11835,"journal":{"name":"Enzyme Research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2012/281384","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enzyme Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2012/281384","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/8/8 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 28
Abstract
The production of a thermostable and highly alkaline pectinase by Bacillus pumilus dcsr1 was optimized in solid-state fermentation (SSF) and the impact of various treatments (chemical, enzymatic, and in combination) on the quality of ramie fibres was investigated. Maximum enzyme titer (348.0 ± 11.8 Ug(-1) DBB) in SSF was attained, when a mixture of agro-residues (sesame oilseed cake, wheat bran, and citrus pectin, 1 : 1 : 0.01) was moistened with mineral salt solution (a(w) 0.92, pH 9.0) at a substrate-to-moistening agent ratio of 1 : 2.5 and inoculated with 25% of 24 h old inoculum, in 144 h at 40°C. Parametric optimization in SSF resulted in 1.7-fold enhancement in the enzyme production as compared to that recorded in unoptimized conditions. A 14.2-fold higher enzyme production was attained in SSF as compared to that in submerged fermentation (SmF). The treatment with the enzyme significantly improved tensile strength and Young's modulus, reduction in brittleness, redness and yellowness, and increase in the strength and brightness of ramie fibres.