{"title":"A simple recipe for the non-expert bioinformaticist for building experimentally-testable hypotheses for proteins with no known homologs.","authors":"Alexander Zawaira, Youtaro Shibayama","doi":"10.1007/s10969-012-9141-7","DOIUrl":null,"url":null,"abstract":"<p><p>The study of the protein-protein interactions (PPIs) of unique ORFs is a strategy for deciphering the biological roles of unique ORFs of interest. For uniform reference, we define unique ORFs as those for which no matching protein is found after PDB-BLAST search with default parameters. The uniqueness of the ORFs generally precludes the straightforward use of structure-based approaches in the design of experiments to explore PPIs. Many open-source bioinformatics tools, from the commonly-used to the relatively esoteric, have been built and validated to perform analyses and/or predictions of sorts on proteins. How can these available tools be combined into a protocol that helps the non-expert bioinformaticist researcher to design experiments to explore the PPIs of their unique ORF? Here we define a pragmatic protocol based on accessibility of software to achieve this and we make it concrete by applying it on two proteins-the ImuB and ImuA' proteins from Mycobacterium tuberculosis. The protocol is pragmatic in that decisions are made largely based on the availability of easy-to-use freeware. We define the following basic and user-friendly software pathway to build testable PPI hypotheses for a query protein sequence: PSI-PRED → MUSTER → metaPPISP → ASAView and ConSurf. Where possible, other analytical and/or predictive tools may be included. Our protocol combines the software predictions and analyses with general bioinformatics principles to arrive at consensus, prioritised and testable PPI hypotheses.</p>","PeriodicalId":73957,"journal":{"name":"Journal of structural and functional genomics","volume":"13 4","pages":"185-200"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10969-012-9141-7","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of structural and functional genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10969-012-9141-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/9/7 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The study of the protein-protein interactions (PPIs) of unique ORFs is a strategy for deciphering the biological roles of unique ORFs of interest. For uniform reference, we define unique ORFs as those for which no matching protein is found after PDB-BLAST search with default parameters. The uniqueness of the ORFs generally precludes the straightforward use of structure-based approaches in the design of experiments to explore PPIs. Many open-source bioinformatics tools, from the commonly-used to the relatively esoteric, have been built and validated to perform analyses and/or predictions of sorts on proteins. How can these available tools be combined into a protocol that helps the non-expert bioinformaticist researcher to design experiments to explore the PPIs of their unique ORF? Here we define a pragmatic protocol based on accessibility of software to achieve this and we make it concrete by applying it on two proteins-the ImuB and ImuA' proteins from Mycobacterium tuberculosis. The protocol is pragmatic in that decisions are made largely based on the availability of easy-to-use freeware. We define the following basic and user-friendly software pathway to build testable PPI hypotheses for a query protein sequence: PSI-PRED → MUSTER → metaPPISP → ASAView and ConSurf. Where possible, other analytical and/or predictive tools may be included. Our protocol combines the software predictions and analyses with general bioinformatics principles to arrive at consensus, prioritised and testable PPI hypotheses.