{"title":"ESTIMATION OF DIRECTIONAL BRAIN ANISOTROPY FROM EEG SIGNALS USING THE MELLIN TRANSFORM AND IMPLICATIONS FOR SOURCE LOCALIZATION.","authors":"Catherine Stamoulis, Bernard S Chang","doi":"10.1109/ICDSP.2011.6004976","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents a novel approach for the estimation of frequency-specific EEG scale modulations by the directional anisotropy of the brain, using the Mellin transform [1, 2, 3]. In the case of epileptic sources, the activity recorded by routine scalp EEG includes contributions not only from a seizure's primary propagation path but also from secondary paths and unrelated to the seizure activity. In addition, the anisotropy of the brain directionally modulates the seizure-related signal component. We estimated patient-specific direction-specific, frequency-locked scale shifts. During the ictal interval, these shifts occurred at frequencies ≥50 Hz. We further estimated the effect of scale modulations on time-delay estimation. Larger time-delays were estimated from EEGs that had been corrected by a scale factor prior to this estimation. Thus, corrections for non-linear scaling of EEGs may ultimately improve time-delay estimation for source localization, particularly in cases of seizures rapidly propagating to large areas of the brain.</p>","PeriodicalId":88900,"journal":{"name":"International Conference on Digital Signal Processing proceedings : DSP. International Conference on Digital Signal Processing","volume":"2011 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2011-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/ICDSP.2011.6004976","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Digital Signal Processing proceedings : DSP. International Conference on Digital Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2011.6004976","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This paper presents a novel approach for the estimation of frequency-specific EEG scale modulations by the directional anisotropy of the brain, using the Mellin transform [1, 2, 3]. In the case of epileptic sources, the activity recorded by routine scalp EEG includes contributions not only from a seizure's primary propagation path but also from secondary paths and unrelated to the seizure activity. In addition, the anisotropy of the brain directionally modulates the seizure-related signal component. We estimated patient-specific direction-specific, frequency-locked scale shifts. During the ictal interval, these shifts occurred at frequencies ≥50 Hz. We further estimated the effect of scale modulations on time-delay estimation. Larger time-delays were estimated from EEGs that had been corrected by a scale factor prior to this estimation. Thus, corrections for non-linear scaling of EEGs may ultimately improve time-delay estimation for source localization, particularly in cases of seizures rapidly propagating to large areas of the brain.