Circulating TGF-β1, glycation, and oxidation in children with diabetes mellitus type 1.

Experimental Diabetes Research Pub Date : 2012-01-01 Epub Date: 2012-09-26 DOI:10.1155/2012/510902
Vladimír Jakuš, Michal Sapák, Jana Kostolanská
{"title":"Circulating TGF-β1, glycation, and oxidation in children with diabetes mellitus type 1.","authors":"Vladimír Jakuš,&nbsp;Michal Sapák,&nbsp;Jana Kostolanská","doi":"10.1155/2012/510902","DOIUrl":null,"url":null,"abstract":"<p><p>The present study investigates the relationship between diabetes metabolic control represented by levels of HbA1c, early glycation products-(fructosamine (FAM)), serum-advanced glycation end products (s-AGEs), lipoperoxidation products (LPO), advanced oxidation protein products (AOPP) and circulating TGF-β in young patients with DM1. The study group consisted of 79 patients with DM1 (8-18 years). 31 healthy children were used as control (1-16 years). Baseline characteristics of patients were compared by Student's t-test and nonparametric Mann-Whitney test (Statdirect), respectively. The correlations between the measured parameters were examined using Pearson correlation coefficient r and Spearman's rank test, respectively. A P value < 0.05 was considered as statistically significant. HbA1c was measured by LPLC, s-AGEs spectrofluorimetrically, LPO and AOPP spectrophotometrically and TGF-β by ELISA. Our results showed that parameters of glycation and oxidation are significantly higher in patients with DM1 than in healthy control. The level of serum TGF-β was significantly higher in diabetics in comparison with control: 7.1(3.6; 12.6) versus 1.6(0.8; 3.9) ng/mL. TGF-β significantly correlated with age and duration of DM1. There was not found any significant relation between TGF-β and parameres of glycation and oxidation. However, these results do not exclude the association between TGF-β and the onset of diabetic complications.</p>","PeriodicalId":12109,"journal":{"name":"Experimental Diabetes Research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2012/510902","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Diabetes Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2012/510902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/9/26 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

The present study investigates the relationship between diabetes metabolic control represented by levels of HbA1c, early glycation products-(fructosamine (FAM)), serum-advanced glycation end products (s-AGEs), lipoperoxidation products (LPO), advanced oxidation protein products (AOPP) and circulating TGF-β in young patients with DM1. The study group consisted of 79 patients with DM1 (8-18 years). 31 healthy children were used as control (1-16 years). Baseline characteristics of patients were compared by Student's t-test and nonparametric Mann-Whitney test (Statdirect), respectively. The correlations between the measured parameters were examined using Pearson correlation coefficient r and Spearman's rank test, respectively. A P value < 0.05 was considered as statistically significant. HbA1c was measured by LPLC, s-AGEs spectrofluorimetrically, LPO and AOPP spectrophotometrically and TGF-β by ELISA. Our results showed that parameters of glycation and oxidation are significantly higher in patients with DM1 than in healthy control. The level of serum TGF-β was significantly higher in diabetics in comparison with control: 7.1(3.6; 12.6) versus 1.6(0.8; 3.9) ng/mL. TGF-β significantly correlated with age and duration of DM1. There was not found any significant relation between TGF-β and parameres of glycation and oxidation. However, these results do not exclude the association between TGF-β and the onset of diabetic complications.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
1型糖尿病儿童循环TGF-β1、糖基化和氧化
本研究探讨了以HbA1c、早期糖基化产物-(果糖胺(FAM))、血清晚期糖基化终产物(s-AGEs)、脂质过氧化产物(LPO)、晚期氧化蛋白产物(AOPP)水平为代表的糖尿病代谢控制与年轻DM1患者循环TGF-β之间的关系。研究组包括79例DM1患者(8-18岁)。31名健康儿童(1 ~ 16岁)作为对照。分别采用学生t检验和非参数Mann-Whitney检验(Statdirect)比较患者的基线特征。测量参数之间的相关性分别采用Pearson相关系数r和Spearman秩检验。P值< 0.05为有统计学意义。采用LPLC、s-AGEs分光光度法测定糖化血红蛋白,采用LPO、AOPP分光光度法测定糖化血红蛋白,ELISA法测定TGF-β。我们的研究结果表明,DM1患者的糖基化和氧化参数明显高于健康对照。糖尿病患者血清TGF-β水平显著高于对照组:7.1(3.6;12.6) vs . 1.6(0.8;3.9 ng / mL。TGF-β与DM1年龄、病程显著相关。TGF-β与糖基化和氧化参数之间无显著相关性。然而,这些结果并不能排除TGF-β与糖尿病并发症发生之间的关联。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Experimental Diabetes Research
Experimental Diabetes Research 医学-内分泌学与代谢
自引率
0.00%
发文量
0
审稿时长
3-8 weeks
期刊最新文献
Nontraditional Therapy of Diabetes and Its Complications In Vitro Investigation and Evaluation of Novel Drug Based on Polyherbal Extract against Type 2 Diabetes Prevalence and Risk Factors Associated with Type 2 Diabetes in Elderly Patients Aged 45-80 Years at Kanungu District Erratum to “Circulating Levels of MicroRNA from Children with Newly Diagnosed Type 1 Diabetes and Healthy Controls: Evidence That miR-25 Associates to Residual Beta-Cell Function and Glycaemic Control during Disease Progression” A PEDF-derived peptide inhibits retinal neovascularization and blocks mobilization of bone marrow-derived endothelial progenitor cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1