Superior Silencing by 2',4'-BNA(NC)-Based Short Antisense Oligonucleotides Compared to 2',4'-BNA/LNA-Based Apolipoprotein B Antisense Inhibitors.

IF 1.3 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Nucleic Acids Pub Date : 2012-01-01 Epub Date: 2012-09-26 DOI:10.1155/2012/707323
Tsuyoshi Yamamoto, Hidenori Yasuhara, Fumito Wada, Mariko Harada-Shiba, Takeshi Imanishi, Satoshi Obika
{"title":"Superior Silencing by 2',4'-BNA(NC)-Based Short Antisense Oligonucleotides Compared to 2',4'-BNA/LNA-Based Apolipoprotein B Antisense Inhibitors.","authors":"Tsuyoshi Yamamoto,&nbsp;Hidenori Yasuhara,&nbsp;Fumito Wada,&nbsp;Mariko Harada-Shiba,&nbsp;Takeshi Imanishi,&nbsp;Satoshi Obika","doi":"10.1155/2012/707323","DOIUrl":null,"url":null,"abstract":"<p><p>The duplex stability with target mRNA and the gene silencing potential of a novel bridged nucleic acid analogue are described. The analogue, 2',4'-BNA(NC) antisense oligonucleotides (AONs) ranging from 10- to 20-nt-long, targeted apolipoprotein B. 2',4'-BNA(NC) was directly compared to its conventional bridged (or locked) nucleic acid (2',4'-BNA/LNA)-based counterparts. Melting temperatures of duplexes formed between 2',4'-BNA(NC)-based antisense oligonucleotides and the target mRNA surpassed those of 2',4'-BNA/LNA-based counterparts at all lengths. An in vitro transfection study revealed that when compared to the identical length 2',4'-BNA/LNA-based counterpart, the corresponding 2',4'-BNA(NC)-based antisense oligonucleotide showed significantly stronger inhibitory activity. This inhibitory activity was more pronounced in shorter (13-, 14-, and 16-mer) oligonucleotides. On the other hand, the 2',4'-BNA(NC)-based 20-mer AON exhibited the highest affinity but the worst IC(50) value, indicating that very high affinity may undermine antisense potency. These results suggest that the potency of AONs requires a balance between reward term and penalty term. Balance of these two parameters would depend on affinity, length, and the specific chemistry of the AON, and fine-tuning of this balance could lead to improved potency. We demonstrate that 2',4'-BNA(NC) may be a better alternative to conventional 2',4'-BNA/LNA, even for \"short\" antisense oligonucleotides, which are attractive in terms of drug-likeness and cost-effective bulk production.</p>","PeriodicalId":16575,"journal":{"name":"Journal of Nucleic Acids","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2012/707323","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nucleic Acids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2012/707323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/9/26 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 17

Abstract

The duplex stability with target mRNA and the gene silencing potential of a novel bridged nucleic acid analogue are described. The analogue, 2',4'-BNA(NC) antisense oligonucleotides (AONs) ranging from 10- to 20-nt-long, targeted apolipoprotein B. 2',4'-BNA(NC) was directly compared to its conventional bridged (or locked) nucleic acid (2',4'-BNA/LNA)-based counterparts. Melting temperatures of duplexes formed between 2',4'-BNA(NC)-based antisense oligonucleotides and the target mRNA surpassed those of 2',4'-BNA/LNA-based counterparts at all lengths. An in vitro transfection study revealed that when compared to the identical length 2',4'-BNA/LNA-based counterpart, the corresponding 2',4'-BNA(NC)-based antisense oligonucleotide showed significantly stronger inhibitory activity. This inhibitory activity was more pronounced in shorter (13-, 14-, and 16-mer) oligonucleotides. On the other hand, the 2',4'-BNA(NC)-based 20-mer AON exhibited the highest affinity but the worst IC(50) value, indicating that very high affinity may undermine antisense potency. These results suggest that the potency of AONs requires a balance between reward term and penalty term. Balance of these two parameters would depend on affinity, length, and the specific chemistry of the AON, and fine-tuning of this balance could lead to improved potency. We demonstrate that 2',4'-BNA(NC) may be a better alternative to conventional 2',4'-BNA/LNA, even for "short" antisense oligonucleotides, which are attractive in terms of drug-likeness and cost-effective bulk production.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
与基于2',4'-BNA/ na的载脂蛋白B反义抑制剂相比,基于2',4'-BNA(NC)的短反义寡核苷酸具有更好的沉默效果。
描述了一种新型桥接核酸类似物与靶mRNA的双工稳定性和基因沉默潜力。类似物2',4'- bna (NC)反义寡核苷酸(aon)长度从10- 20 nt不等,靶向载脂蛋白b。2',4'- bna (NC)与其传统的桥接(或锁定)核酸(2',4'- bna /LNA)的对偶物直接比较。基于2',4'-BNA(NC)的反义寡核苷酸与靶mRNA之间形成的双链的熔融温度在所有长度上都超过基于2',4'-BNA/ lna的对应物。体外转染研究表明,与相同长度的2',4'-BNA/ na基对应物相比,相应的2',4'-BNA(NC)基反义寡核苷酸具有明显更强的抑制活性。这种抑制活性在较短的(13-、14-和16-聚)寡核苷酸中更为明显。另一方面,基于2',4'-BNA(NC)的20-mer AON具有最高的亲和力,但IC(50)值最差,表明非常高的亲和力可能会破坏反义效力。这些结果表明,AONs的效力需要在奖励期限和惩罚期限之间取得平衡。这两个参数的平衡取决于亲和力、长度和AON的特定化学性质,对这种平衡进行微调可以提高效力。我们证明,2',4'-BNA(NC)可能是传统的2',4'-BNA/LNA的更好替代品,即使是“短”反义寡核苷酸,这在药物相似性和成本效益方面具有吸引力批量生产。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Nucleic Acids
Journal of Nucleic Acids BIOCHEMISTRY & MOLECULAR BIOLOGY-
CiteScore
3.10
自引率
21.70%
发文量
5
审稿时长
12 weeks
期刊最新文献
Dual Detection of Hepatitis B and C Viruses Using CRISPR-Cas Systems and Lateral Flow Assay. Genetic Polymorphisms and Forensic Parameters of Thirteen X-Chromosome Markers in the Iraqi Kurdish Population Synthesis and Evaluation of MGB Polyamide-Oligonucleotide Conjugates as Gene Expression Control Compounds. Comparing Two Methods for the Isolation of Exosomes. Development of a Reference Method and Materials for Quantitative Measurement of UV-Induced DNA Damage in Mammalian Cells: Comparison of Comet Assay and Cell Viability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1