A next-generation sequencing approach to study the transcriptomic changes during the differentiation of physarum at the single-cell level.

Gene regulation and systems biology Pub Date : 2012-01-01 Epub Date: 2012-10-01 DOI:10.4137/GRSB.S10224
Israel Barrantes, Jeremy Leipzig, Wolfgang Marwan
{"title":"A next-generation sequencing approach to study the transcriptomic changes during the differentiation of physarum at the single-cell level.","authors":"Israel Barrantes,&nbsp;Jeremy Leipzig,&nbsp;Wolfgang Marwan","doi":"10.4137/GRSB.S10224","DOIUrl":null,"url":null,"abstract":"<p><p>Physarum polycephalum is a unicellular eukaryote belonging to the amoebozoa group of organisms. The complex life cycle involves various cell types that differ in morphology, function, and biochemical composition. Sporulation, one step in the life cycle, is a stimulus-controlled differentiation response of macroscopic plasmodial cells that develop into fruiting bodies. Well-established Mendelian genetics and the occurrence of macroscopic cells with a naturally synchronous population of nuclei as source of homogeneous cell material for biochemical analyses make Physarum an attractive model organism for studying the regulatory control of cell differentiation. Here, we develop an approach using RNA-sequencing (RNA-seq), without needing to rely on a genome sequence as a reference, for studying the transcriptomic changes during stimulus-triggered commitment to sporulation in individual plasmodial cells. The approach is validated through the obtained expression patterns and annotations, and particularly the results from up- and downregulated genes, which correlate well with previous studies.</p>","PeriodicalId":73138,"journal":{"name":"Gene regulation and systems biology","volume":"6 ","pages":"127-37"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4137/GRSB.S10224","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gene regulation and systems biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4137/GRSB.S10224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/10/1 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Physarum polycephalum is a unicellular eukaryote belonging to the amoebozoa group of organisms. The complex life cycle involves various cell types that differ in morphology, function, and biochemical composition. Sporulation, one step in the life cycle, is a stimulus-controlled differentiation response of macroscopic plasmodial cells that develop into fruiting bodies. Well-established Mendelian genetics and the occurrence of macroscopic cells with a naturally synchronous population of nuclei as source of homogeneous cell material for biochemical analyses make Physarum an attractive model organism for studying the regulatory control of cell differentiation. Here, we develop an approach using RNA-sequencing (RNA-seq), without needing to rely on a genome sequence as a reference, for studying the transcriptomic changes during stimulus-triggered commitment to sporulation in individual plasmodial cells. The approach is validated through the obtained expression patterns and annotations, and particularly the results from up- and downregulated genes, which correlate well with previous studies.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
新一代测序方法在单细胞水平上研究绒泡菌分化过程中的转录组学变化。
多头绒泡菌是一种单细胞真核生物,属于变形虫组。复杂的生命周期包括各种不同形态、功能和生化成分的细胞类型。孢子形成是生物生命周期中的一个步骤,是宏观质细胞在刺激控制下分化成子实体的反应。成熟的孟德尔遗传学和具有自然同步细胞核群体的宏观细胞作为生物化学分析的均匀细胞物质来源,使绒泡菌成为研究细胞分化调控的有吸引力的模式生物。在这里,我们开发了一种使用rna测序(RNA-seq)的方法,而不需要依赖基因组序列作为参考,来研究单个疟原虫细胞在刺激触发的产孢过程中转录组学的变化。通过获得的表达模式和注释,特别是上调和下调基因的结果,该方法得到了验证,这与先前的研究有很好的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pathway-Based Analysis of the Liver Response to Intravenous Methylprednisolone Administration in Rats: Acute Versus Chronic Dosing. Temporal and Spatial Differential Expression of Glutamate Receptor Genes in the Brain of Down Syndrome Introductory Chapter: Gene Regulation, an RNA Network-Dependent Architecture Model-based Evaluation of Gene Expression Changes in Response to Leishmania Infection. Gene Activation by the Cytokine-Driven Transcription Factor STAT1
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1