{"title":"Multiplex ligation-dependent probe amplification (MLPA) in tumor diagnostics and prognostics.","authors":"Cornelia Hömig-Hölzel, Suvi Savola","doi":"10.1097/PDM.0b013e3182595516","DOIUrl":null,"url":null,"abstract":"<p><p>The increasing knowledge about genetic alterations and molecular biomarkers in cancer initiation and progression opens new possibilities for the treatment of various types of cancer. This requires the inclusion of sensitive, and preferably multiplex, methods for the detection of molecular genetic alterations in the toolbox of classic pathology. Multiplex ligation-dependent probe amplification (MLPA) is a multiplex polymerase chain reaction-based method that can detect changes in the gene copy number status, DNA methylation, and point mutations simultaneously. MLPA probes recognize target sequences of only 50 to 100 nucleotides in length. This makes it possible to use MLPA even on highly fragmented DNA, and allows the detection of small deletions encompassing only a single exon. MLPA is a reliable, cost-effective, and robust method that can be performed using a standard thermocycler and capillary electrophoresis equipment, generating results within 24 hours with a short hands-on working time. Up to 50 different genomic locations can be tested in a single reaction, which can be sufficient to detect those genetic alterations that are of diagnostic and prognostic significance in a certain tumor entity. In the last years, MLPA has been used successfully in tumor diagnostics and in cancer research. This review gives an overview on the collected experience of MLPA applications on tumor DNA, about the advantages but also potential pitfalls and limitations of this technique.</p>","PeriodicalId":11235,"journal":{"name":"Diagnostic Molecular Pathology","volume":"21 4","pages":"189-206"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1097/PDM.0b013e3182595516","citationCount":"131","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostic Molecular Pathology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1097/PDM.0b013e3182595516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 131
Abstract
The increasing knowledge about genetic alterations and molecular biomarkers in cancer initiation and progression opens new possibilities for the treatment of various types of cancer. This requires the inclusion of sensitive, and preferably multiplex, methods for the detection of molecular genetic alterations in the toolbox of classic pathology. Multiplex ligation-dependent probe amplification (MLPA) is a multiplex polymerase chain reaction-based method that can detect changes in the gene copy number status, DNA methylation, and point mutations simultaneously. MLPA probes recognize target sequences of only 50 to 100 nucleotides in length. This makes it possible to use MLPA even on highly fragmented DNA, and allows the detection of small deletions encompassing only a single exon. MLPA is a reliable, cost-effective, and robust method that can be performed using a standard thermocycler and capillary electrophoresis equipment, generating results within 24 hours with a short hands-on working time. Up to 50 different genomic locations can be tested in a single reaction, which can be sufficient to detect those genetic alterations that are of diagnostic and prognostic significance in a certain tumor entity. In the last years, MLPA has been used successfully in tumor diagnostics and in cancer research. This review gives an overview on the collected experience of MLPA applications on tumor DNA, about the advantages but also potential pitfalls and limitations of this technique.
期刊介绍:
Diagnostic Molecular Pathology focuses on providing clinical and academic pathologists with coverage of the latest molecular technologies, timely reviews of established techniques, and papers on the applications of these methods to all aspects of surgical pathology and laboratory medicine. It publishes original, peer-reviewed contributions on molecular probes for diagnosis, such as tumor suppressor genes, oncogenes, the polymerase chain reaction (PCR), and in situ hybridization. Articles demonstrate how these highly sensitive techniques can be applied for more accurate diagnosis.