Metformin stimulates FGF21 expression in primary hepatocytes.

Experimental Diabetes Research Pub Date : 2012-01-01 Epub Date: 2012-10-15 DOI:10.1155/2012/465282
Eva B Nygaard, Sara G Vienberg, Cathrine Ørskov, Harald S Hansen, Birgitte Andersen
{"title":"Metformin stimulates FGF21 expression in primary hepatocytes.","authors":"Eva B Nygaard,&nbsp;Sara G Vienberg,&nbsp;Cathrine Ørskov,&nbsp;Harald S Hansen,&nbsp;Birgitte Andersen","doi":"10.1155/2012/465282","DOIUrl":null,"url":null,"abstract":"<p><p>Fibroblast growth factor 21 (FGF21) is a novel metabolic regulator of glucose and lipid metabolism; however, the exact mechanism of action and regulation of FGF21 is not fully understood. Metabolic status plays an important role in the regulation of FGF21, and we therefore examined whether metformin, an indirect AMPK-activator, regulates FGF21 expression in hepatocytes. FGF21 mRNA and protein expression were determined after incubation of primary cultured rat and human hepatocytes with metformin for 24 hours. To study the role of AMPK in the putative regulation of FGF21, hepatocytes were incubated with Compound C (an AMPK inhibitor) in the presence of metformin. A strong dose-dependent increase in FGF21 expression was observed in both rat and human hepatocytes treated with metformin. This effect was blocked by addition of the AMPK-inhibitor Compound C. The study shows that metformin is a potent inducer of hepatic FGF21 expression and that the effect of metformin seems to be mediated through AMPK activation. As FGF21 therapy normalizes blood glucose in animal models of type 2 diabetes, the induction of hepatic FGF21 by metformin might play an important role in metformin's antidiabetic effect.</p>","PeriodicalId":12109,"journal":{"name":"Experimental Diabetes Research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2012/465282","citationCount":"55","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Diabetes Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2012/465282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/10/15 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 55

Abstract

Fibroblast growth factor 21 (FGF21) is a novel metabolic regulator of glucose and lipid metabolism; however, the exact mechanism of action and regulation of FGF21 is not fully understood. Metabolic status plays an important role in the regulation of FGF21, and we therefore examined whether metformin, an indirect AMPK-activator, regulates FGF21 expression in hepatocytes. FGF21 mRNA and protein expression were determined after incubation of primary cultured rat and human hepatocytes with metformin for 24 hours. To study the role of AMPK in the putative regulation of FGF21, hepatocytes were incubated with Compound C (an AMPK inhibitor) in the presence of metformin. A strong dose-dependent increase in FGF21 expression was observed in both rat and human hepatocytes treated with metformin. This effect was blocked by addition of the AMPK-inhibitor Compound C. The study shows that metformin is a potent inducer of hepatic FGF21 expression and that the effect of metformin seems to be mediated through AMPK activation. As FGF21 therapy normalizes blood glucose in animal models of type 2 diabetes, the induction of hepatic FGF21 by metformin might play an important role in metformin's antidiabetic effect.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二甲双胍刺激原代肝细胞FGF21的表达。
成纤维细胞生长因子21 (FGF21)是一种新型的糖脂代谢调节因子;然而,FGF21的确切作用机制和调控尚不完全清楚。代谢状态在FGF21的调控中起重要作用,因此我们研究了二甲双胍(一种间接ampk激活剂)是否调节肝细胞中FGF21的表达。二甲双胍对原代培养的大鼠和人肝细胞孵育24小时后,检测FGF21 mRNA和蛋白的表达。为了研究AMPK在FGF21的调节中的作用,在二甲双胍存在的情况下,用化合物C (AMPK抑制剂)培养肝细胞。在二甲双胍处理的大鼠和人肝细胞中观察到FGF21表达的强烈剂量依赖性增加。这种作用被添加AMPK抑制剂化合物c阻断。研究表明,二甲双胍是肝脏FGF21表达的有效诱导剂,二甲双胍的作用似乎是通过AMPK激活介导的。由于FGF21治疗可使2型糖尿病动物模型的血糖正常化,二甲双胍诱导肝脏FGF21可能在二甲双胍的降糖作用中发挥重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Experimental Diabetes Research
Experimental Diabetes Research 医学-内分泌学与代谢
自引率
0.00%
发文量
0
审稿时长
3-8 weeks
期刊最新文献
Nontraditional Therapy of Diabetes and Its Complications In Vitro Investigation and Evaluation of Novel Drug Based on Polyherbal Extract against Type 2 Diabetes Prevalence and Risk Factors Associated with Type 2 Diabetes in Elderly Patients Aged 45-80 Years at Kanungu District Erratum to “Circulating Levels of MicroRNA from Children with Newly Diagnosed Type 1 Diabetes and Healthy Controls: Evidence That miR-25 Associates to Residual Beta-Cell Function and Glycaemic Control during Disease Progression” A PEDF-derived peptide inhibits retinal neovascularization and blocks mobilization of bone marrow-derived endothelial progenitor cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1