Optimal mapping of terrestrial gamma dose rates using geological parent material and aerogeophysical survey data.

Journal of Environmental Monitoring Pub Date : 2012-12-01 Epub Date: 2012-11-13 DOI:10.1039/c2em30563a
B G Rawlins, C Scheib, A N Tyler, D Beamish
{"title":"Optimal mapping of terrestrial gamma dose rates using geological parent material and aerogeophysical survey data.","authors":"B G Rawlins,&nbsp;C Scheib,&nbsp;A N Tyler,&nbsp;D Beamish","doi":"10.1039/c2em30563a","DOIUrl":null,"url":null,"abstract":"<p><p>Regulatory authorities need ways to estimate natural terrestrial gamma radiation dose rates (nGy h⁻¹) across the landscape accurately, to assess its potential deleterious health effects. The primary method for estimating outdoor dose rate is to use an in situ detector supported 1 m above the ground, but such measurements are costly and cannot capture the landscape-scale variation in dose rates which are associated with changes in soil and parent material mineralogy. We investigate the potential for improving estimates of terrestrial gamma dose rates across Northern Ireland (13,542 km²) using measurements from 168 sites and two sources of ancillary data: (i) a map based on a simplified classification of soil parent material, and (ii) dose estimates from a national-scale, airborne radiometric survey. We used the linear mixed modelling framework in which the two ancillary variables were included in separate models as fixed effects, plus a correlation structure which captures the spatially correlated variance component. We used a cross-validation procedure to determine the magnitude of the prediction errors for the different models. We removed a random subset of 10 terrestrial measurements and formed the model from the remainder (n = 158), and then used the model to predict values at the other 10 sites. We repeated this procedure 50 times. The measurements of terrestrial dose vary between 1 and 103 (nGy h⁻¹). The median absolute model prediction errors (nGy h⁻¹) for the three models declined in the following order: no ancillary data (10.8) > simple geological classification (8.3) > airborne radiometric dose (5.4) as a single fixed effect. Estimates of airborne radiometric gamma dose rate can significantly improve the spatial prediction of terrestrial dose rate.</p>","PeriodicalId":50202,"journal":{"name":"Journal of Environmental Monitoring","volume":"14 12","pages":"3086-93"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1039/c2em30563a","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Monitoring","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/c2em30563a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/11/13 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Regulatory authorities need ways to estimate natural terrestrial gamma radiation dose rates (nGy h⁻¹) across the landscape accurately, to assess its potential deleterious health effects. The primary method for estimating outdoor dose rate is to use an in situ detector supported 1 m above the ground, but such measurements are costly and cannot capture the landscape-scale variation in dose rates which are associated with changes in soil and parent material mineralogy. We investigate the potential for improving estimates of terrestrial gamma dose rates across Northern Ireland (13,542 km²) using measurements from 168 sites and two sources of ancillary data: (i) a map based on a simplified classification of soil parent material, and (ii) dose estimates from a national-scale, airborne radiometric survey. We used the linear mixed modelling framework in which the two ancillary variables were included in separate models as fixed effects, plus a correlation structure which captures the spatially correlated variance component. We used a cross-validation procedure to determine the magnitude of the prediction errors for the different models. We removed a random subset of 10 terrestrial measurements and formed the model from the remainder (n = 158), and then used the model to predict values at the other 10 sites. We repeated this procedure 50 times. The measurements of terrestrial dose vary between 1 and 103 (nGy h⁻¹). The median absolute model prediction errors (nGy h⁻¹) for the three models declined in the following order: no ancillary data (10.8) > simple geological classification (8.3) > airborne radiometric dose (5.4) as a single fixed effect. Estimates of airborne radiometric gamma dose rate can significantly improve the spatial prediction of terrestrial dose rate.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用地质母材和航空地球物理调查数据进行陆地伽马剂量率的最佳作图。
监管当局需要有办法准确估计整个地区的自然地面伽马辐射剂量率(nGy h⁻),以评估其潜在的有害健康影响。估计室外剂量率的主要方法是使用支撑在离地面1米处的原位探测器,但这种测量费用高昂,而且无法捕捉到与土壤和母质矿物学变化有关的剂量率在景观尺度上的变化。我们利用来自168个地点的测量数据和两个辅助数据来源(i)基于土壤母质简化分类的地图,以及(ii)来自全国范围的空气辐射测量调查的剂量估计,研究了改进整个北爱尔兰(13542平方公里)陆地伽马剂量率估计的潜力。我们使用了线性混合建模框架,其中两个辅助变量作为固定效应包含在单独的模型中,加上一个捕获空间相关方差成分的相关结构。我们使用交叉验证程序来确定不同模型的预测误差的大小。我们从10个地面测量数据中随机抽取一个子集,并从剩下的数据(n = 158)中形成模型,然后使用该模型预测其他10个地点的值。这个过程我们重复了50次。地面剂量的测量值在1到103 (nGy h⁻)之间变化。三种模型的中位数绝对模型预测误差(nGy h⁻¹)的下降顺序如下:无辅助数据(10.8)>简单地质分类(8.3)>作为单一固定效应的空气传播辐射剂量(5.4)。空气放射伽马剂量率的估算可以显著改善地面剂量率的空间预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Environmental Monitoring
Journal of Environmental Monitoring 环境科学-分析化学
自引率
0.00%
发文量
0
审稿时长
2.3 months
期刊最新文献
Total Quality Management (Tqm) As a Prerequisite For Improving The Competitiveness In Waste Management And Waste Reprocessing Micro, Small And Medium Enterprises To Achieve Business Excellence Experimental Investigation on the Impact of Sulphate and Chloride on High Volume Fly Ash Concrete Leachate Characteristics and its Treatment Techniques - A Review Emerging Trend in Power Generation and Utilization Mitigations for Sustainability of the Megacities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1