Environmental toxicants--induced epigenetic alterations and their reversers.

Minju Kim, Minji Bae, Hyunkyung Na, Mihi Yang
{"title":"Environmental toxicants--induced epigenetic alterations and their reversers.","authors":"Minju Kim,&nbsp;Minji Bae,&nbsp;Hyunkyung Na,&nbsp;Mihi Yang","doi":"10.1080/10590501.2012.731959","DOIUrl":null,"url":null,"abstract":"<p><p>Epigenetics has been emphasized in the postgenome era to clarify obscure health risks of environmental toxicants including endocrine disrupting chemicals (EDCs). In addition, mixed exposure in real life can modify health consequences of the toxicants. Particularly, some nutritional and dietary materials modify individual susceptibility through changes in the epigenome. Therefore, we focused on some environmental toxicants that induce epigenetic alterations, and introduced chemopreventive materials to reverse the toxicants-induced epigenetic alterations. Methodologically, we used global and specific DNA methylation as epigenetic end points and searched epigenetic modulators in food. We reviewed various epigenetic end points induced by environmental toxicants including alcohol, asbestos, nanomaterials, benzene, EDCs, metals, and ionizing radiation. The epigenetic end points can be summarized into global hypomethylation and specific hypermethylation at diverse tumor suppress genes. Exposure timing, dose, sex, or organ specificity should be considered to use the epigenetic end points as biomarkers for exposure to the epimutagenic toxicants. Particularly, neonatal exposure to the epimutagens can influence their future adult health because of characteristics of the epimutagens, which disrupt epigenetic regulation in imprinting, organogenesis, development, etc. Considering interaction between epimutagenic toxicants and their reversers in food, we suggest that multiple exposures to them can alleviate or mask epigenetic toxicity in real life. Our present review provides useful information to find new end points of environmental toxicants and to prevention from environment-related diseases.</p>","PeriodicalId":51085,"journal":{"name":"Journal of Environmental Science and Health Part C-Environmental Carcinogenesis & Ecotoxicology Reviews","volume":"30 4","pages":"323-67"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/10590501.2012.731959","citationCount":"42","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Science and Health Part C-Environmental Carcinogenesis & Ecotoxicology Reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10590501.2012.731959","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 42

Abstract

Epigenetics has been emphasized in the postgenome era to clarify obscure health risks of environmental toxicants including endocrine disrupting chemicals (EDCs). In addition, mixed exposure in real life can modify health consequences of the toxicants. Particularly, some nutritional and dietary materials modify individual susceptibility through changes in the epigenome. Therefore, we focused on some environmental toxicants that induce epigenetic alterations, and introduced chemopreventive materials to reverse the toxicants-induced epigenetic alterations. Methodologically, we used global and specific DNA methylation as epigenetic end points and searched epigenetic modulators in food. We reviewed various epigenetic end points induced by environmental toxicants including alcohol, asbestos, nanomaterials, benzene, EDCs, metals, and ionizing radiation. The epigenetic end points can be summarized into global hypomethylation and specific hypermethylation at diverse tumor suppress genes. Exposure timing, dose, sex, or organ specificity should be considered to use the epigenetic end points as biomarkers for exposure to the epimutagenic toxicants. Particularly, neonatal exposure to the epimutagens can influence their future adult health because of characteristics of the epimutagens, which disrupt epigenetic regulation in imprinting, organogenesis, development, etc. Considering interaction between epimutagenic toxicants and their reversers in food, we suggest that multiple exposures to them can alleviate or mask epigenetic toxicity in real life. Our present review provides useful information to find new end points of environmental toxicants and to prevention from environment-related diseases.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
环境毒物——诱发的表观遗传改变及其逆转。
表观遗传学在后基因组时代被强调,以澄清环境毒物包括内分泌干扰物(EDCs)的模糊健康风险。此外,现实生活中的混合接触可以改变有毒物质对健康的影响。特别是,一些营养和膳食材料通过改变表观基因组来改变个体易感性。因此,我们重点研究了一些诱发表观遗传改变的环境有毒物质,并引入化学预防物质来逆转有毒物质诱导的表观遗传改变。在方法上,我们使用全局和特异性DNA甲基化作为表观遗传终点,并在食物中寻找表观遗传调节剂。我们回顾了由环境毒物引起的各种表观遗传终点,包括酒精、石棉、纳米材料、苯、EDCs、金属和电离辐射。表观遗传终点可以概括为不同肿瘤抑制基因的整体低甲基化和特异性高甲基化。暴露时间、剂量、性别或器官特异性应考虑使用表观遗传终点作为暴露于致外突变毒物的生物标志物。特别是,由于附着物的特性,新生儿接触附着物会影响他们未来的成年健康,这些附着物会破坏印记、器官发生、发育等方面的表观遗传调控。考虑到食物中的表观诱变毒性及其逆转物之间的相互作用,我们建议在现实生活中多次接触它们可以减轻或掩盖表观遗传毒性。本综述为寻找新的环境毒物终点和预防环境相关疾病提供了有益的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
0
审稿时长
>24 weeks
期刊介绍: Journal of Environmental Science and Health, Part C: Environmental Carcinogenesis and Ecotoxicology Reviews aims at rapid publication of reviews on important subjects in various areas of environmental toxicology, health and carcinogenesis. Among the subjects covered are risk assessments of chemicals including nanomaterials and physical agents of environmental significance, harmful organisms found in the environment and toxic agents they produce, and food and drugs as environmental factors. It includes basic research, methodology, host susceptibility, mechanistic studies, theoretical modeling, environmental and geotechnical engineering, and environmental protection. Submission to this journal is primarily on an invitational basis. All submissions should be made through the Editorial Manager site, and are subject to peer review by independent, anonymous expert referees. Please review the instructions for authors for manuscript submission guidance.
期刊最新文献
Polycyclic aromatic hydrocarbons as a potential source of carcinogenicity of mate. Enhanced generation of reactive oxygen species and photocatalytic activity by Pt-based metallic nanostructures: the composition matters. Intrinsic catalytic activity of rhodium nanoparticles with respect to reactive oxygen species scavenging: implication for diminishing cytotoxicity. Electrochemical detection and quantification of Reactive Red 195 dyes on graphene modified glassy carbon electrode. Regulation of cytochrome P450 expression by microRNAs and long noncoding RNAs: Epigenetic mechanisms in environmental toxicology and carcinogenesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1