L Rosanò, R Cianfrocca, P Tocci, F Spinella, V Di Castro, F Spadaro, E Salvati, A M Biroccio, P G Natali, A Bagnato
{"title":"β-arrestin-1 is a nuclear transcriptional regulator of endothelin-1-induced β-catenin signaling","authors":"L Rosanò, R Cianfrocca, P Tocci, F Spinella, V Di Castro, F Spadaro, E Salvati, A M Biroccio, P G Natali, A Bagnato","doi":"10.1038/onc.2012.527","DOIUrl":null,"url":null,"abstract":"Despite the fundamental pathophysiological importance of β-catenin in tumor progression, the mechanism underlying its final transcriptional output has been partially elucidated. Here, we report that β-arrestin-1 (β-arr1) is an epigenetic regulator of endothelin (ET)-1-induced β-catenin signaling in epithelial ovarian cancer (EOC). In response to ET A receptor (ETAR) activation by ET-1, β-arr1 increases its nuclear translocation and direct binding to β-catenin. This in turn enhanced β-catenin nuclear accumulation and transcriptional activity, which was prevented by expressing a mutant β-arr1 incapable of nuclear distribution. β-arr1–β-catenin interaction controls β-catenin target gene expressions, such as ET-1, Axin 2, Matrix metalloproteinase 2, and Cyclin D1, by promoting histone deacetylase 1 (HDAC1) dissociation and the recruitment of p300 acetyltransferase on these promoter genes, resulting in enhanced H3 and H4 histone acetylation, and gene transcription, required for cell migration, invasion and epithelial-to-mesenchymal transition. These effects are abrogated by β-arr1 silencing or by mutant β-arr1, as well as by β-catenin or p300 silencing, confirming that nuclear β-arr1 forms a functional complex capable of regulating epigenetic changes in β-catenin-driven invasive behavior. In a murine orthotopic model of metastatic human EOC, silencing of β-arr1 or mutant β-arr1 expression, as well as ETAR blockade, inhibits metastasis. In human EOC tissues, β-arr1–β-catenin nuclear complexes are selectively enriched at β-catenin target gene promoters, correlating with tumor grade, confirming a direct in vivo β-arr1–β-catenin association at specific set of genes involved in EOC progression. Collectively, our study provides insights into how a β-arr1-mediated epigenetic mechanism controls β-catenin activity, unraveling new components required for its nuclear function in promoting metastasis.","PeriodicalId":19524,"journal":{"name":"Oncogene","volume":"32 42","pages":"5066-5077"},"PeriodicalIF":6.9000,"publicationDate":"2012-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1038/onc.2012.527","citationCount":"79","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncogene","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/onc2012527","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 79
Abstract
Despite the fundamental pathophysiological importance of β-catenin in tumor progression, the mechanism underlying its final transcriptional output has been partially elucidated. Here, we report that β-arrestin-1 (β-arr1) is an epigenetic regulator of endothelin (ET)-1-induced β-catenin signaling in epithelial ovarian cancer (EOC). In response to ET A receptor (ETAR) activation by ET-1, β-arr1 increases its nuclear translocation and direct binding to β-catenin. This in turn enhanced β-catenin nuclear accumulation and transcriptional activity, which was prevented by expressing a mutant β-arr1 incapable of nuclear distribution. β-arr1–β-catenin interaction controls β-catenin target gene expressions, such as ET-1, Axin 2, Matrix metalloproteinase 2, and Cyclin D1, by promoting histone deacetylase 1 (HDAC1) dissociation and the recruitment of p300 acetyltransferase on these promoter genes, resulting in enhanced H3 and H4 histone acetylation, and gene transcription, required for cell migration, invasion and epithelial-to-mesenchymal transition. These effects are abrogated by β-arr1 silencing or by mutant β-arr1, as well as by β-catenin or p300 silencing, confirming that nuclear β-arr1 forms a functional complex capable of regulating epigenetic changes in β-catenin-driven invasive behavior. In a murine orthotopic model of metastatic human EOC, silencing of β-arr1 or mutant β-arr1 expression, as well as ETAR blockade, inhibits metastasis. In human EOC tissues, β-arr1–β-catenin nuclear complexes are selectively enriched at β-catenin target gene promoters, correlating with tumor grade, confirming a direct in vivo β-arr1–β-catenin association at specific set of genes involved in EOC progression. Collectively, our study provides insights into how a β-arr1-mediated epigenetic mechanism controls β-catenin activity, unraveling new components required for its nuclear function in promoting metastasis.
期刊介绍:
Oncogene is dedicated to advancing our understanding of cancer processes through the publication of exceptional research. The journal seeks to disseminate work that challenges conventional theories and contributes to establishing new paradigms in the etio-pathogenesis, diagnosis, treatment, or prevention of cancers. Emphasis is placed on research shedding light on processes driving metastatic spread and providing crucial insights into cancer biology beyond existing knowledge.
Areas covered include the cellular and molecular biology of cancer, resistance to cancer therapies, and the development of improved approaches to enhance survival. Oncogene spans the spectrum of cancer biology, from fundamental and theoretical work to translational, applied, and clinical research, including early and late Phase clinical trials, particularly those with biologic and translational endpoints.